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Preface
Preface

lthough the growth of computing technology has enabled users to collect ever in-
creasing amounts of data, software in many respects, has not kept pace with how 
we use our hardware. In a day an analytical or process instrument can collect data 

on many samples, each with hundreds or thousands of variables. The software bundled 
with most instruments is not designed to extract meaningful information efficiently from 
such large data sets. Instead, the emphasis is on spewing (compiling and printing tables) 
and storing (archiving them for later retrieval). Moreover, although the data may be mul-
tivariate, most data analysis software treats it as a succession of non-correlated, univari-
ate measures.

Today’s technology demands a better approach: one that acknowledges not only the non-
specific and multivariate nature of most instrumented data but also common bottlenecks 
in the data analysis process:
• a plethora of algorithms which can distract or even confuse the user

• the lack of a standard file format to ease the blending of data from several instrument 
sources

• non-intuitive and non-graphical software interfaces which steepen an already chal-
lenging learning curve

• the absence of a mechanism to organize all computations performed on a data set 
into a single file

Welcome to Pirouette

Pirouette was developed to address all of the problems mentioned above while also tak-
ing advantage of the stability and standardization of the current 32-bit Windows operat-
ing systems which permit virtually unlimited file size and true multitasking/
multithreading (Pirouette will run as a 32-bit application on 64-bit systems).

One key strength of Pirouette is the complete integration of graphics. Typically, the result 
of an analysis is a graphic or group of graphics. These range from 2D plots and line plots 
to dendrograms and rotatable 3D plots. Multiple plots in different windows are automat-
ically linked, where appropriate, so that when two or more graphics are on screen, sam-
ples highlighted in one display are also highlighted in the others. For example, samples 
highlighted in a principal component scores plot will also be highlighted in a dendro-
gram.

Performing analyses rapidly and easily is important; however, the saving and re-using the 
results of these analyses as models is equally important. With Pirouette, working with 
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model files is as easy as working with any other file. Any model created within Pirouette 
can be saved and re-loaded later; predictions on new samples do not require rebuilding 
the model.

We have audited the way the majority of our users work and found that a stand-alone 
manual, regardless of its quality, is consulted infrequently. We decided, therefore, to sup-
ply the documentation as an electronic help file. Complete information is at your elec-
tronic fingertip in the form of a portable document format, complete with hyperlinked 
text. To obtain a hardcopy of any portion of this user guide, simply print from the Acrobat 
Reader software.

We believe Pirouette to be the most powerful and yet easy to use statistical processing 
and display program available. The routines included in this version are broadly applica-
ble and often encountered in the chemometric literature. The graphical representations of 
the data and the interactive windowing environment are unique. As we continue to refine 
the software interface and enhance the statistical features of Pirouette, we look forward 
to your comments.

Happy computing and thanks for selecting Pirouette!

Structure of the Documentation

The document you are reading is organized with the goal of training you in multivariate 
analysis, regardless of your chemometrics background or level of experience in window-
ing interfaces. The basic thrust of each major section is listed below. Several chapters re-
fer to data sets included with Pirouette. If you follow along with our examples, you will 
better understand both the points made in the chapter and how to work with Pirouette to 
analyze your own data sets.

PART I  INTRODUCTION TO PIROUETTE
This section briefly introduces the Pirouette environment, discusses the software instal-
lation, and explains how to run a Pirouette analysis and build both classification and re-
gression models for future use.

Chapter 1, Quick Start This introductory chapter contains everything you need to get 
started with Pirouette. Basic features of the Pirouette environment are described, 
including data input, running algorithms and viewing data and results.

Chapter 2, Pattern Recognition Tutorial This chapter walks through the analysis of a 
classification data set to introduce the Pirouette environment and explain some 
of the thought processes behind multivariate analysis.

Chapter 3, Regression Tutorial This chapter walks through a detailed analysis of a re-
gression data set to introduce the Pirouette environment and multivariate analy-
sis. It can augment or replace the instruction given in Chapter 2.

PART II  GUIDE TO MULTIVARIATE ANALYSIS
Part II explains how to perform a multivariate analysis with Pirouette while also serving 
as a textbook on the multivariate methods themselves.

Chapter 4, Preparing for Analysis This chapter discusses how to prepare data for 
analysis. Details of transforms and preprocessing options are included.
iv
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Chapter 5, Exploratory Analysis This chapter explains how to run an exploratory data 
analysis. The two exploratory algorithms contained in Pirouette, Hierarchical 
Cluster Analysis (HCA) and Principal Component Analysis (PCA), are explained 
in detail, along with a discussion of how to manipulate and interpret their graph-
ical results.

Chapter 6, Classification Methods This chapter explains how to build a classification 
model and use it to classify unknown samples. Pirouette’s two classification al-
gorithms—K-Nearest Neighbor (KNN) and Soft Independent Modeling of Class 
Analogy (SIMCA)—are discussed in detail with an emphasis on how to interpret 
the results of each.

Chapter 7, Regression Methods This chapter explains how to build a multivariate re-
gression model and use it to predict continuous properties for unknown samples. 
Pirouette’s two factor-based regression algorithms—Partial Least Squares 
(PLS) and Principal Component Regression (PCR)—are discussed jointly in de-
tail. The results of the two algorithms are interpreted separately and compared. 
Classical Least Squares (CLS) is also described and contrasted with PLS and 
PCR.

Chapter 8, Mixture Analysis This chapter describes methods used to resolve mixtures 
into their underlying components. Multivariate Curve Resolution can be used to 
deconvolve fused chromatographic peaks and can apportion mixtures into their 
source compositions.

Chapter 9, Examples This chapter contains a series of application vignettes which can 
be a starting point for your own specific work. We have built this chapter as an 
overview of different data sets; many are supplied with Pirouette so that you can 
experiment with the data yourself.

PART III  SOFTWARE REFERENCE
Part III is a guide to the Pirouette graphical interface, giving helpful hints so that you can 
exploit its full power. This section also serves as a technical reference for the various but-
tons, menu options and features unique to the Pirouette environment.

Chapter 10, The Pirouette Interface This chapter explains how Pirouette’s tools, cur-
sors and buttons are used to manipulate and interact with tabular and graphical 
displays. In addition, we discuss linking of results shown in different screen win-
dows and how to create data subsets from the graphic display.

Chapter 11, Object Management This chapter explains how to use a central compo-
nent of Pirouette, the Object Manager, for accessing data subsets and computed 
results.

Chapter 12, Charts This chapter describes the various types of graphs available in Pir-
ouette, along with explanations of how to navigate and manipulate each.

Chapter 13, Tables This chapter describes how to hand enter and modify data within the 
spreadsheet. Also included are explanations of how to create subsets from ta-
bles and the navigation, sorting and editing tools.

Chapter 14, Data Input This chapter discusses reading and merging existing files to 
form a project-oriented Pirouette file.

Chapter 15, Output of Results This chapter explains how to print and save Pirouette 
objects and files, including how to save Pirouette model files for use in future pre-
dictions.
v
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Chapter 16, Pirouette Reference This chapter describes all Pirouette menu options 
and dialogs.

PART IV  APPENDICES
A series of subjects are addressed in appendices, including troubleshooting suggestions.

Chapter 17, An Introduction to Matrix Math This chapter gives a background in the 
matrix mathematics underlying all of Pirouette’s multivariate algorithms. In addi-
tion, it describes nomenclature used in presenting equations.

Chapter 18, Tips and Troubleshooting This chapter details the error messages in Pir-
ouette and tips on what you may be able to do when confronted with an error.

Chapter 19, Pirouette Scripting This chapter discusses the use and gives examples for 
processing data using Pirouette engine, but without invoking the user interface. 
Rules and commands are outlined along with some examples.

PIROUETTE RELEASE NOTES
A “Release Notes” document accompanies the materials that comprise Pirouette. Peruse 
this file to learn about new features and enhancements in recent versions as well as 
known problems.
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elcome to Pirouette, part of the Infometrix family of easy-to-use multivariate 
analysis packages. This chapter is designed to get you up to speed in using Pir-
ouette without referring to our extensive documentation. When you have 

browsed this chapter, you may want to follow one or both of the tutorials, in Chapter 2, 
Pattern Recognition Tutorial and Chapter 3, Regression Tutorial.

Pirouette can be run in both demonstration and normal mode. The demonstration mode 
offers full functionality of the data processing and viewing components of the software, 
but analyzes only the example data files bundled with the package. It can, however, still 
be used to visualize any data set that can be loaded as well as to convert files in supported 
formats. Even Pirouette binary files (with a .PIR extension) can be opened and investi-
gated: previously computed results can be viewed and evaluated. Thus, the demonstra-
tion version is itself a powerful data visualization package.

Users purchasing Pirouette will be issued a license which enables access to all chemom-
etric algorithms available in the product. Instructions for licensing Pirouette, as well as 
any other Infometrix product, are detailed in a separate document–the Licensing Guide 
for Infometrix Software–that is installed with IPAK, the Infometrix Product Access Kit.

Pirouette Briefly

Where possible, the features and styles employed in Pirouette follow the standard adopt-
ed by modern Windows GUI programs. The Pirouette environment is organized around 
two sub-window styles: data-oriented graphs/tables and the Object Manager. Selections 
are made by pressing the left mouse button while the right mouse button performs special 
operations, such as displaying extra information or unmagnifying previously enlarged 
line and scatter plots. In keeping with both Pirouette and Windows tradition, menu op-
tions can also be accessed via keyboard equivalents.

A group of icons along the top edge of the Pirouette window, known as the ribbon, con-
tains buttons to provide mouse access to common program features. These buttons are 

W
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1 Quick Start: Pirouette Briefly
grouped by specific function. The groupings include file and data processing functions, 
window manipulations, interaction tools, edit tools, view type buttons, plot tools and 
navigation aids.

Figure 1.1
The Pirouette
environment

DATA INPUT
There are three ways to prepare data for analysis in Pirouette: by hand entering informa-
tion, by pasting information from another application or by accessing an existing file 
with the Open Data item in the File menu.

Pirouette recognizes a variety of general and instrument-specific file formats. Common 
file formats are listed below. Other formats supported in the current version are discussed 
in “Other File Formats” on page 14-10.

Table 1.1
Common Pirouette

file types

RUNNING ALGORITHMS
Once data have been input, multivariate analysis can begin. Clicking the Run button

Table 1.2
The Run setup

button

Extension Format Description

.PIR2 Pirouette’s native, fast loading binary format – which 
stores objects calculated during a Pirouette session

.DAT
An ASCII format which can be generated by a word 
processor or text editor – requires formatting specifiers 
(see “ASCII Files” on page 14-5)

.XLSX
The standard format created by Microsoft Excel – 
requires a few formatting specifics (see “Excel Files” on 
page 14-9)

To configure and run an algorithm
1–2



1 Quick Start: Pirouette Briefly
brings you to the heart of Pirouette, a dialog box which presents a list of data subsets, 
transforms and algorithms with their associated options.

Figure 1.2
The Run Configure

dialog box

Data analyses are configured by highlighting an entry in the Algorithm list box, selecting 
a data subset by highlighting an entry in the Exclusion Sets list box, then clicking on the 
Add button. Any modifications to Algorithm Options or Transforms must be made be-
fore the Algorithm/Exclusion Set combination is added to the configuration list. Note 
that Algorithm Options are algorithm-specific while Transforms can be applied to any 
algorithm. You can repeat the highlighting and adding process so that several algorithm/
subset pairs are set into the list. Finally, click on the Run button to begin processing all 
configured algorithms.

VIEWING RESULTS
Once an algorithm run has finished, its results are made available via the Object Manag-
er. Click and drag the algorithm folder to the Pirouette work area, and its results will be 
displayed in a single window containing an array of subplots, each showing one of the 
computed objects. The number of items in this window depends on the algorithm execut-
ed. You can interact with a subplot after zooming it to full window status. Any changes 
made to the plot in the zoomed state are maintained when it is unzoomed and returned to 
the array. Two buttons on the ribbon zoom and unzoom subplots.

Table 1.3
Ribbon buttons for
manipulating array

plots

Button Description

Zoom a subplot to the full window

Unzoom a subplot (i.e., back to its 
originating array)
1–3



1 Quick Start: Pirouette Briefly
Objects created by Pirouette take on one of the seven views shown in Table 1.4. The first 
five views are generally available; the last two are algorithm specific. All views except 
the dendrogram are accessible from the ribbon; clicking a ribbon view button switches 
the view of the zoomed plot (that is, a plot not shown as an array).

Table 1.4
Pirouette’s views

In addition, a Notes window is produced for each algorithm. In this window are initially 
presented some information about the data processing steps used for that algorithm. This 
window is editable, and changes you make by typing are stored with the data, so it be-
comes a vehicle for recording commentary relevant to your analysis.

THE OBJECT MANAGER
Exclusion sets and computed results are organized via Pirouette’s Object Manager, in es-
sence a historian of file activity. The Object tree lists all existing raw and computed data 
objects. Tree items are iconic, revealing the structure represented (for details, see “Object 
Manager icons” on page 11-1). Note that subset and algorithm result names can be 
changed via the Rename item on the Objects menu.

Icon Description

Table

3D scatter plot

2D scatter plot

Line plot

Multiplot

Factor selection plot

Dendrogram
1–4
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Figure 1.3
Object Manager

New windows can be created via a procedure called “drag-and-drop”: click-drag an item 
from the Object Manager and drop it onto the work area. You can drag an algorithm re-
sult folder (to produce an array plot) or an individual item.

SAVING IMAGES
Pirouette provides three ways to store its images:
• Printing to a device or file

• Copying to the Clipboard

• Saving to a file

To capture graphics for a report, copy a bitmap or metafile image to the Windows clip-
board and then paste it into another Windows application. To save an image to a metafile, 
select Edit/Copy Special/To File.

SAVING DATA AND MODELS
A data file can be saved in one of ten formats (Pirouette (legacy and current), ASCII (for-
matted, flat, and CSV), Excel (legacy and current), NWA (NQA), ChemStation (CH), 
Galactic (SPC) and ANDI (CDF)) and loaded back into Pirouette later or merged with 
another file of the same type. However, only the first format will preserve existing sub-
sets and algorithm results. You may also save an Object Manager entity (i.e., subset or 
computed object) into a file using File > Save Objects.

Note: Starting with Pirouette 4.0 rev 1, the ability to run as a standard User has been enabled. 
However, such a User with limited permissions cannot write to folders in Program Files, 
the default path for Pirouette. Instead, save your files in My Documents or a sub-folder 
thereof.

Prediction models from all algorithms except HCA can be saved for later use by Pirouette 
or InStep. When a model is saved using File > Save Models, the Pirouette binary format 
is the default. SIMCA, KNN, PLS and PCR models can also be saved in ASCII and other 
formats. See “ASCII Models” in Chapter 15 for details.
1–5



1 Quick Start: Technical Support
PIROUETTE HELP
This version of Pirouette includes extensive on-line documentation to assist you in learn-
ing about Pirouette and multivariate data analysis. Help has been implemented by con-
verting the Pirouette manual to Adobe’s portable document format (PDF), which is 
suitable for presentation of information on almost any computer platform. Pirouette’s 
PDF files can be viewed with Acrobat Reader, which is readily available and integrated 
into most browsers. You may use Acrobat itself or a web browser of your choice so long 
as the Acrobat Reader plug-in has been included with the browser as described in “Setup” 
on page 16-45.

Help contains context-sensitive hyper-links, an index and a main user guide document 
with built-in chapter and section bookmarks to facilitate navigation. Acrobat or your 
browser can be opened directly from the Pirouette Help menu. When referring frequently 
to Help, leave the browser open in the background and switch to it using Alt-Tab. Be-
cause the PDF format works on most platforms, Help documents can be moved to anoth-
er platform (e.g., Unix, Macintosh) without any modification.

Technical Support

Pirouette is a premium product, and with it Infometrix offers readily available technical 
support. We can assist if you are having difficulty in installing or running the software. 
If you have questions about the use of the technology to solve specific problems, Info-
metrix also provides consulting and/or training. Applications information and links to 
other chemometric sites are available on our web page. Feel free to contact us (see “Tech-
nical Assistance” on page 18-14) for more details.
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his chapter introduces Pirouette by working through a multivariate pattern recog-
nition example. Multivariate analyses should begin by defining the problem and as-
suring the validity of the data. Thus, an exploratory analysis should always be 

performed even if you intend to develop models from the data set. If the results of this 
exploration indicate that the data are appropriate for building a classification model, then 
one of the Pirouette’s classification algorithms can be used to group samples into cate-
gories.

This tutorial is based on a well-described data set which contains elemental composition 
of both obsidian quarry samples and obsidian artifacts which may have originated from 
the quarries1. The goal is to teach you not only the Pirouette interface but also chemom-
etric fundamentals. To present the material as a 30 to 60 minute session, the chemometric 
interpretation is necessarily light. For additional detail on interpreting algorithmic re-
sults, refer to Part II  Guide to Multivariate Analysis.

The Basics

DEFINE THE PROBLEM
The first step is to establish the purpose of the investigation: for this data set, it is to de-
termine if the quarry of origin can be identified for the artifacts. If so, it might be possible 
to assess migration patterns and trading routes of the indigenous cultures using these 
tools. Although drawn from archaeology, the example is in fact a generic pattern prob-
lem: to classify samples into categories. These categories might be based on geographic 
or manufacturing origin or might relate to product category (i.e., good or bad). Typical 
general questions include:
• Is the analytical data appropriate for classifying samples?

• Can we determine the category of a sample from its chemical composition?

• How reliable are the classifications we develop?

T
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2 Pattern Recognition Tutorial: The Basics
The data are X–ray fluorescence determinations of ten trace metals in quarry samples and 
artifacts. The four quarries are north of the San Francisco Bay area and the artifacts were 
found in several neighboring locations1. Specific questions include:
• Is the trace metal signature of each quarry sufficiently different to distinguish among 

them?

• How homogeneous are the samples drawn from each quarry?

• Do artifacts have trace metal signatures similar to those of the quarries?

OPEN THE FILE
To begin using the program,
• click on START, select Programs, the Infometrix folder, the Pirouette folder, then the 

program icon for Pirouette

The screen will appear as shown in the figure below. Note the menu commands and but-
ton ribbon along the top and the Object Manager window. Go to Windows > Preferences 
> Chart > Window Attributes and change the Maximum Number of Windows Created 
value to 2. Click on OK to close the dialog box.

Note: You can change this value back to 0, the default, after the exercise.

Figure 2.1
Pirouette’s start up

screen

The tutorial data are stored in a file called ARCH.XLS which is supplied with Pirouette. 
To load a data file:
• Click on the File menu at the top of the Pirouette window

• Move down to the Open Data... item as shown below
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Figure 2.2
Choosing Open Data

from the File menu

Note: The leftmost button on the Ribbon also accesses the Open Data dialog box. 

The Open Data dialog box shown below allows you to select drives, navigate their direc-
tory structure, and filter by type the list of files displayed. 

Figure 2.3
The Open Data

dialog

In this example, ARCH.XLS resides in the Data directory which is itself in the Pirouette 
directory. Once you have moved to the DATA directory and specified Excel in the Files 
of Type box,
• Highlight the file name by clicking on it (as in the above figure)

• Click on Open

and ARCH.XLS is loaded. Click on the Full Data entry in the Object Manager and, while 
pressing the left mouse button, drag the mouse cursor outside of the Object Manager win-
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2 Pattern Recognition Tutorial: The Basics
dow until the cursor changes form. Release the mouse button and the ARCH data are pre-
sented as a table view.

Figure 2.4
The ARCH data in a

table view

EXAMINE THE DATA
Scan the table Full Data to get a feel for its general structure: ten columns of trace metal 
measurements, which are independent variables, and an eleventh column (C1) named 
Quarry, which is a categorical (or class) variable. Quarry values 1, 2, 3 and 4 identify 
samples from the four obsidian source sites, while values 5, 6 and 7 are assigned to arti-
fact samples. Scanning vertically, you can determine that the table contains 75 cases 
(rows) of which 63 are quarry samples and 12 are artifacts. Quarry samples names begin 
with three digits while artifact names begin with the letter s.

Note: The name of the class variable which is active appears in the status bar message area 
at the bottom of the Pirouette window. For ARCH, the message reads “Active Class: 
Quarry”.

Line plotting the data is always advisable to locate obvious outliers and to decide if trans-
forms and /or preprocessing will be appropriate.

• Click on the Line Plot button 

A trace’s color is mapped to the class variable value. It is immediately apparent from the 
following figure that there are large values and large relative variances for iron (Fe, Var. 
#1) and calcium (Ca, Var. #4). This observation will be important later when we choose 
a preprocessing method. No obvious outliers are apparent, so we can start exploratory 
analysis without first excluding any samples.
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Figure 2.5
The ARCH data as a

line plot

It is advisable to examine the data using other graphic tools. To see a series of variable 
biplots as shown in the next figure:

• Click on the Multiplot button 

Figure 2.6
The multiplot view

To see the expanded version of titanium plotted against iron (Ti vs. Fe) shown in the next 
figure,
• Double-click on the outlined plot in the upper left corner
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Figure 2.7
2D View of Ti vs. Fe

To see a 3D plot of Ti, Fe and Ba,

• Click on the 3D button 

Figure 2.8
A rotatable 3D plot of

Full Data

The default cursor for the 3D view looks like a top. To rotate the plot,

• Position the top cursor  over the plot area

• Move the mouse while pressing the left button

Use all of these views to investigate groupings in the data and look for trends. In the case 
of ARCH, clustering by quarry is evident in the raw data.

• Click on the Table button  to return to a tabular view
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2 Pattern Recognition Tutorial: Exploratory Analysis
Exploratory Analysis

Now we'll perform an exploratory analysis using two complementary methods, Hierar-
chical Cluster Analysis (HCA) and Principal Component Analysis (PCA).

RUNNING EXPLORATORY ALGORITHMS
To initiate an exploratory analysis,
• Click on the Process menu and select the Run item

The Run Configure dialog box will open, showing available algorithms and an exclusion 
set. In this case, only the Full Data subset exists, which is automatically highlighted. For 
a complete description of exclusion sets, see “Subsets” on page 11-9.

Note: The Run button also opens the Run Configure dialog box. 

To visualize the relationships among samples, we will select HCA and PCA. The differ-
ence in magnitude of the responses for the elements noted earlier suggests Autoscale pre-
processing. For an explanation of this choice, see “Preprocessing” on page 4-26.

To configure an HCA run:
• Click on HCA in the algorithm list

• Click on the down arrow in the box to the right of Preprocessing and select Autoscale

• In a similar fashion, choose Incremental Link as the Linkage Method

• Click on Add at the bottom left of the dialog box

To configure a PCA run:
• Click on PCA in the algorithm list

• Change Preprocessing to Autoscale as in HCA above

• Click on Maximum Factors and change the number to 7

• Click on Add at the bottom left of the dialog box

The two items in the Run Configuration box show both the exclusion set and the algo-
rithm to be applied to it: Full Data HCA and Full Data PCA. When you have finished 
setting up the run, the dialog box should appear as follows.
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Figure 2.9
The Run Configure

dialog

To start processing,
• Click on Run at the bottom of the dialog box

While calculations are performed, a Run Status dialog box is displayed. As each run fin-
ishes, a results window is presented if your Windows > Preferences > Chart > Window 
Attributes > Maximum Number of Windows Created is set to 2 (0 is the default). If no 
problems are encountered during processing, the Run Status box closes when all runs 
have completed. Otherwise, it remains open; the condition which caused a run to abort is 
described when the Details button is clicked.

Four windows are now available with the Object Manager showing an iconic represen-
tation of every computed result. The remaining three windows contain Full Data, Full 
Data HCA results and Full Data PCA results. To see what we have at this point,
• Select the Tile item from the Windows menu.

A plot similar to the one shown below should appear.
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Figure 2.10
Tiled HCA and PCA

results

We now focus on two results and utilize Pirouette’s drag and drop capabilities to create 
a custom chart. First, close the HCA and PCA windows by clicking on the go-away box. 
This leaves the Full Data and Object Manager windows open. To make a custom plot,
• Click on the Object Manager window to make it active

• Double-click on the Full Data folder to show which algorithms have been run

• Double-click on the HCA folder to reveal its computed objects

• Double-click on the PCA folder to reveal its computed objects

• Click on the Clusters icon to select it

• With the Ctrl key held down, click on the Scores icon to select it as well

• Keeping the mouse button depressed, drag over empty space in the Pirouette win-
dow

• Release the mouse button to complete the drag and drop

The screen appears as below.
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Figure 2.11
Customized HCA
dendrogram and

PCA Scores view

During the drag and drop, the cursor changes to a dragging tool as it begins to move. As 
the cursor moves over the open space, it again changes form to indicate that dropping is 
allowed. On release of the mouse button, the window redraws with the two graphics dis-
played side-by-side; the window is titled User to reflect its custom status. You can use 
this method to create any number of custom plot arrays.

DATA INTERPRETATION
To check on the distinct clusters found in our initial examination of Full Data,
• Click on the dendrogram to make it the active subplot

• Expand it to full window with the Zoom button 

• Position the cursor over the vertical dashed line at its top end where it becomes a 
double arrow

• Click-drag the line to the left to a cursor similarity of about 0.60

• Release the mouse button

This defines and colors four clusters in the dendrogram. The result is shown below.
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Figure 2.12
ARCH dendrogram

with a cursor
sImilarity of 0.60

• Click the Unzoom button to shrink the dendrogram and produce a window which 

again contains two subplots 

To expand the 3D scores plot to full window,
• Click on the Scores subplot

• Click on the Zoom button

Note: The Zoom and the Unzoom buttons are used to navigate through array plots 
and multiplots. The Zoom button acts on the plot which is surrounded by a thick-
er border (red by default).It has mouse and keyboard equivalents: double-click 
on the subplot or press Enter. Similarly, unzoom a plot by shift-double-clicking 
or pressing Ctrl-Enter.

To display the scores as a 2D plot with points labeled by sample index,

• Click on the 2D button 

• On the Display menu, choose the Point Labels item, then the Index item

• Click on the Unzoom button to shrink the 2D plot

Your view should look similar to Figure 2.15. Note the ellipse surrounding the points on 
the Scores display; this is the 95% confidence interval for the full ARCH dataset. 

Next, we will setup a view of Full Data which allows strategic selection/highlighting of 
particular samples. To organize samples by Quarry value,
• Click on the Full Data window to make it active

• Click on the 2D button to convert the table view to a scatter plot

• Click on the Selector button  to see its dialog box (shown below)

• Select Sample Index and click on the Set Y button

• Scroll down the Available list until Quarry is displayed
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• Select Quarry and click on the Set X button

• Click on OK

Figure 2.13
The Selector dialog

The 2D plot now shows Quarry category versus sample number. Such a view allows us 
to easily select/highlight all members of specific groups. To select all Quarry 4 samples,

• Click and drag a box around them, using the Pointer 

The result is shown in the following figure.

Figure 2.14
Highlighting Quarry

4 samples

Highlighting is manifested by filled points so that those selected can be differentiated 
from unselected, unfilled ones. This highlighting is mapped to every other relevant dis-
play, whether graphical or tabular. Therefore, the Quarry 4 samples appear highlighted 
in the previously created User chart containing the dendrogram and scores. These sam-
ples occupy the bottom branch in the dendrogram and cluster in a localized region on the 
right of the scores plot.
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Figure 2.15
Highlighted Quarry 4
samples in the HCA

and PCA views

We can locate Quarry 1, Quarry 2 and Quarry 3 members in a similar fashion by high-
lighting them in the Quarry vs. Sample # plot and then examining the dendrogram and 
scores plot. We find that each quarry occupies a separate region of both the dendrogram 
and scores plot which implies that the trace metal signature of each quarry can be distin-
guished. It is thus probable that a successful classification model can be built from the 
ARCH data.

We can also highlight the artifacts (the so-called “Quarries” 5, 6 and 7) and see that they 
are located on dendrogram branches associated with Quarries 1, 2 and 3, but none on the 
Quarry 4 branch.
• Zoom the dendrogram to full window

so that the view looks like that in the following figure.

Figure 2.16
No artifacts in the

Quarry 4 cluster

In effect, this dendrogram classifies the artifacts. To see which artifacts cluster with 
Quarry 2,
• Move the cursor to the position shown in the figure above

• Double-click that node to produce the next figure
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Figure 2.17
The dendrogram

expanded

All branches to the left of the node just specified now fill the left side of the window. The 
miniature dendrogram on the upper right, called the overview, shows the expanded re-
gion in a different color. Double-clicking on nodes in either the expanded or overview 
regions is an easy way to navigate the dendrogram. You can step out of the expanded 
view one node at a time by clicking on the far right of the expanded dendrogram when 
the cursor takes on a right arrow shape.

Clicking on a dendrogram node marks it with a small circle in the expanded region. Node 
information is presented in the lower right portion of the dendrogram window.

Note: The dendrogram view cannot be converted to any other view. For that reason, no view 
switching buttons are available when the HCA window is active. Also, whenever a small 
enough number of samples appear in the expanded region, names replace the color bar 
on the far left. Making the window taller allows the display of more names.

When sample names show in the dendrogram, you can see how the artifacts match 
against specific quarries.

To understand a little more about the ARCH data prior to performing classification mod-
eling,
• Click on the PCA folder

• With the left mouse button down, drag the PCA folder to a blank portion of the work 
area

• Drop the folder by releasing the mouse button
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Figure 2.18
PCA results

PCA results are presented as an array of subplots. Subplots 2-4 are basic PCA objects, 
while the next six are modeling diagnostics. In this walkthrough, we are concerned with 
exploratory analysis and so address only the basic PCA objects. Other objects have SIM-
CA analogs which are discussed in “Soft Independent Modeling of Class Analogy” on 
page 6-15.

The second subplot describes how much of the total variance in the ARCH data is ex-
plained by each additional principal component. To see the variance values,

• Double-click on the second subplot to zoom it to full window

• Click on the Table button. 

Figure 2.19
Table view of the

PCA Factor Select
object

The first principal component explains over 52% of the total variance; more than 95% of 
the variance is captured by the first 5 principal components.

• Click the Unzoom button to return to the array plot 

The third and fourth subplots (shown as 3D views) are the scores and loadings. You can 
think of the principal component axes as representing a compressed view of the multi-
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variate data. The scores are a mapping of the original sample data onto a coordinate sys-
tem specified by the loadings. To see the relationship among the samples,
• Double-click on the third subplot to expand it to full window

• Click-drag the mouse from the NE to the SW to get a view similar to that shown in the 
following figure, where point labels are displayed as their row numbers

Figure 2.20
Rotated ARCH

scores

• Click on the ID button 

• Position the question mark cursor over the point in the extreme SW

• Click and hold to show the sample number and name, #75: s5136953

Sample #75, an artifact because its name starts with the letter s, is similar to the green 
Quarry 3 samples except for its larger coordinate on Factor3. Sample #75 appears some-
what separate in the scores plot and may require further investigation. To produce a fig-
ure like the one below,
• Select this point with the Pointer tool

• Drag and drop Full Data from the Object Manager and switch to a line plot view

• Click on the Magnify button 

• Click-drag in the plot region around Sr and Zr

Factor 1 (52.5%)

Factor 2 (20.8%)

Factor 3 (10.8%)
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Figure 2.21
A magnified line plot

 of Full Data

Thus, sample #75 is distinguished from the Quarry 3 (and all other) samples by an anom-
alously large Yttrium concentration shown by the highlighted gray trace in the above fig-
ure. 
• In the Object Manager, open the PCA folder

• Drag and drop the Loadings object onto an open portion of the Pirouette desktop

• Go to the Display menu and select Point Labels\Name to label show the element as-
signments.

The result should look like the plot shown below. By rotating the loadings axes to a po-
sition similar to the Scores view, we can see that displacement of sample 75 along the 
Factor 3 axis is indeed related to Yttrium (Y) content, also displaced along the Factor 3 
axis in the loadings plot. Looking at scores and loadings plots side-by-side will illustrate 
this correlation.

Figure 2.22
Loading plot

identifies the reason
for the #75 outlier

Before designating sample #75 an outlier, we should confirm its yttrium measurement 
and decide if the variability in Quarry 3 is well-represented. Then we could use classifi-
cation methods such as KNN and SIMCA to see if they corroborate the assignments im-
plied by the HCA and PCA clustering.
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Modeling and Model Validation

Exploratory analysis with HCA and PCA has shown that there are separate clusters of 
samples, indicating that analysis with pattern recognition algorithms ought to succeed. 
Thus, the next stage of analysis will be to build models that can be used to predict from 
which category (i.e., quarry) a sample originates.

KNN and SIMCA are algorithms which build models that classify samples into discrete 
categories. Both are based on the concept of proximity, the assumption that if a set of 
measurements for an unknown sample is very similar to that of a specific group, then the 
unknown is likely to be a member of that group. KNN classifies based on a plurality vote 
of a specified number of nearest neighbor known samples. SIMCA finds principal com-
ponent axes in the multivariate measurement space for each category. An unknown is 
classified as belonging to a specific group if it lies “closest” to the group and within an 
allowed threshold. For a comprehensive discussion of KNN and SIMCA, refer to Chap-
ter 6, Classification Methods.

KNN MODELING
K-Nearest Neighbor performs its decision making by computing the distance of each 
sample to all the samples in the data matrix. If the distances are ranked in ascending or-
der, we can examine the list to determine which samples are closest to the sample being 
analyzed. Each sample in the matrix also carries a category identification. If we decide 
to look only at the nearest samples (i.e., the one with the smallest distance), then we can 
say that our test samples is most likely a member of the category of the sample that is 
closest. But, if we compare the test sample to the neighbors with the k smallest distances, 
the situation is a little more complicated: each sample contributes its vote for its category. 
Thus, for 3NN (the 3 samples of smallest distance), we will consider only the categories 
for the 3 nearest samples. The category with the most votes is that which is assigned to 
the test sample.

Let's try this with our archaeological data set. First, however, we will make two subsets. 
The first is composed of the set of samples taken from known quarry sites while the sec-
ond is a set of artifact samples whose rocks assumedly were collected from one of these 
quarries. Therefore, we will want to make our classification model from only the quarry 
samples to later attempt to classify the artifact samples according to their origin.
• Select Windows > Close All Windows

• Drag Full Data onto the work area. 

Scroll down so that samples below row 60 are showing. 
• Click to select row 64

• With the Shift key held down, click again on row 75

All of the rows from 64 to 75 should be selected as shown in the figure below.
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Figure 2.23
Selecting artifact

samples to exclude

The selected samples are the artifacts. All of the samples above row 64 are from the quar-
ries. 
• Select Edit > Create Exclude

This creates a new subset with the highlighted rows excluded, retaining only the quarry 
samples as included. Pirouette supplies a default name for the subset of Unnamed. It's a 
good idea to name your subsets after their creation so you can remember what your pur-
pose was. 
• Click on the Unnamed subset in the Object Manager window.

• Select the menu item Objects > Rename

In the dialog box that is shown, enter a new name for the subset, for example, Quarries, 
as shown below.

Figure 2.24
Renaming new

subset
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While we're at it, let's make a subset containing only the artifact samples.
• Drag Full Data onto the work area again

• Click on Sample 1 index to highlight the first row.

• Scroll down and shift-click on row 63.

This should highlight all rows from 1 to 63, the quarry samples.
• Select Edit > Create Exclude

• Click on Unnamed in the Object Manager

• Select Objects > Rename again

Now, type in a name for this subset, such as Artifacts. Now we're ready to create our clas-
sification model.
• Select Process > Run

• Choose KNN from the list of algorithms

• Choose Quarry from the list of Exclusion Sets

We will want to use the same preprocessing parameters as before (autoscale), then hit 
Run to start processing. A Run Status dialog box will appear briefly. Then, in the Object 
Manger, the Quarry subset will show a folder icon to indicate that results are present. 
Opening the folders reveals the objects computed during KNN, as in the following figure.

Figure 2.25
Showing KNN result

objects

Drag the Votes object into the work area. This table contains all of the results of the KNN 
analysis: for each sample, the predicted category at every value K neighbors, in this case 
up to 10 neighbors. 
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Figure 2.26
Votes matrix

To establish a KNN model, we need to decide how many neighbors are appropriate. This 
would be tedious to do with the Votes table; instead drag the Total Misses object to the 
work area. The plot shows the number of misclassifications as a function of number of 
neighbors evaluated (see Figure 2.27). 

Figure 2.27
Total misses object

This is a pretty straightforward classification problem so we see that there are no mis-
takes in classification until 9 neighbors are used. Pirouette sets the optimal number of 
neighbors (the diamond icon on the Total Misses plot) to that value of k that produces the 
fewest mistakes. However, it might be risky to use only one neighbor with real data; its 
is often suggested to use at least 4 or 5 neighbors if that produces an acceptable success 
rate.
• Click on the Total Misses trace at the vertex where K = 4

Now, we are ready to do a classification on our unknown data, the artifacts.
• Select Process > Predict

This presents a Configure Prediction dialog similar to that for configuring a run (see Fig-
ure). 
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Figure 2.28
Configuring

Prediction

• Choose Artifacts from the Exclusion Sets list

• Choose Quarries:KNN from the Models list

• Click on Run

A new folder under the Artifacts icon in the Object Manager is created. Opening this 
folder reveals the simple set of KNN prediction results. Drag the Class Predicted object 
to the work area (see Figure 2.29).
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Figure 2.29
Class Predicted

Object

This table shows the predicted category for each of the samples in the Artifacts subset. 
You could now run the same analysis using the SIMCA algorithm, which is a little more 
involved than KNN, and is an exercise left to the reader.

Review

For the ARCH data set, we find that samples of obsidian analyzed by X–ray fluorescence 
can be classified by applying Hierarchical Cluster Analysis and Principal Components 
Analysis. Collected artifacts have elemental compositions similar to three of the four 
quarries sampled. One quarry appears so dissimilar to the artifacts that it is not consid-
ered an artifact source. In addition, one artifact sample (#75) was identified as a possible 
outlier.

REFERENCES

1. Kowalski, B.R.; Schatzki, T.F. and Stross, F.H. “Classification of Archaeological 
Artifacts by Applying Pattern Recognition to Trace Element Data.” Anal. Chem. (1972) 
44: 2176.
2–23



2 Pattern Recognition Tutorial: Review
2–24



3

Regression Tutorial 3
Contents
The Basics 3-1
Exploratory Data Analysis 3-7
Calibration and Model Validation 3-16
Review 3-33

his chapter is designed to introduce you to the power of multivariate analysis by 
working through an example problem that will result in the creation of a regression 
model. As in classification analysis, the early steps leading to a regression model 

are essentially the same: define the problem, organize the data and check their validity. 
Checking the appropriateness of the data is the realm of exploratory data analysis. When 
we are convinced that the data we have collected are acceptable for further work, the task 
will be to build a calibration model for the concentration or property of interest.

The example in this chapter presents regression analysis as seen through the problem of 
using near infrared spectroscopy to predict a physical property of gasoline (in this case, 
the octane rating of the gasoline). This walkthrough is organized into steps in the order 
that they would be approached for a typical problem. It also contains specific keystroke 
directions to provide you with a vehicle for learning the Pirouette interface. For addition-
al details on interpreting results of the processing algorithms used, please refer to Part I  
Introduction to Pirouette.

The Basics

DEFINE THE PROBLEM
The first step in any Pirouette analysis is to define clearly the problem you seek to solve. 
The data analysis described in this walkthrough is an example of the use of Pirouette to 
model and predict a physical property of a hydrocarbon mixture. In the petroleum indus-
try, such measurements form the basis of commodity pricing, enable quality assessment 
of raw materials, and check the appropriateness of process parameters. A key measure-
ment performed on gasoline is the calculation of the pump octane number. The ASTM 
standard for reporting this measurement is an internal combustion engine in which octane 
is measured by interpolating between the nearest standards above and below the un-
known sample1. The procedure is time consuming, involves expensive and maintenance-

T
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3 Regression Tutorial: The Basics
intensive equipment, and requires skilled labor. For these reasons, the octane engine is 
not well suited to on-line monitoring where the demands are continuous.

Prediction of gasoline octane numbers using spectral features in the near infrared (NIR) 
has been studied by a number of research laboratories and has been implemented in many 
refineries2. The data set described in this study will illustrate how to deal with similar 
problems in your own laboratory or process setting.

The purpose of this study is to assess whether a NIR spectroscopic technique can satis-
factorily replace an octane engine for process quality control:
• Are the errors associated with the optical approach similar to errors we find in running 

the conventional analysis?

• Are there external sources of error that are of concern if the NIR approach is to re-
place or augment the ASTM standard?

ORGANIZE THE DATA
Sixty-seven unleaded gasoline samples were collected from a refinery and analyzed us-
ing a spectrophotometer. The wavelength range was 900 to 1600 nm with a 1 nm incre-
ment between data points. The data were assembled into a Pirouette file by merging the 
individual spectroscopy files. A summary of the results of the chemometric analysis de-
scribed in this chapter has been published3.

In order to speed the analysis in this walkthrough, the original data were compressed into 
a smaller file by deleting all but every 20th data point for all 57 files. The resulting file, 
therefore, spans the same wavelength range in the near infrared but at a fraction of the 
resolution.

Normally, we would not throw away data prior to the analysis, but experience with ex-
amples of applications in the NIR shows that good models can be created even with very 
low resolution data (see the discussion in Kelley et al.2). The model we build will not be 
as good as the one we could make with the full 1 nm data set, but for the purpose of the 
walkthrough, the 20-fold increase in speed makes the analysis instantaneous.

READ THE FILE
Start the program by clicking Start > Programs > Infometrix > Pirouette > Pirouette 5.0. 
Pirouette will load and the screen will appear as shown in the figure below. Before pro-
ceeding, go to Windows > Preferences > Chart > Window Attributes and change the 
Maximum Number of Windows Created value to 2. Click on OK to close the dialog box.

Note: You should change this value back to 0, the default, after the exercise.
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Figure 3.1
The Pirouette start

up screen

Next read in the octane data set:
• Click on File from the menu bar

• Click on the Open Data option as shown in Figure 3.2

Figure 3.2
Selecting Open Data

from the File menu

Note: An alternative is to click on the Open File button in the tool ribbon, 
just below the File command.

The dialog box that comes to the screen allows you to navigate through the subdirectory 
structure of your hard disk drive to find files. You can access any disk drive or subdirec-
tory configured in your computer system. The layout of the Open Data dialog box is 
shown below.
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Figure 3.3
The Open Data

dialog box

The Open Data dialog box lets the user change the directory and filter, by file type, the 
files that come to view in the list box. The data set OCTANE20.DAT is found among the 
list of ASCII files in the DATA subdirectory. To see a list of all files in the DATA sub-
directory that have the DAT extension,
• Browse to the Data directory in the Infometrix\Pirouette folder

• Click on the drop down list on the lower right

• Choose the Infometrix ASCII (*.DAT) selection by clicking on that entry

To open OCTANE20.DAT,
• Click on it in the Files list box

• Click on the Open button

and the data file is read into the computer memory and made available for processing. 
The name of the file will now appear at the top of the screen and in the left side of the 
Object Manager. Click on the data icon named Full Data, below the file icon, and drag it 
over any blank space in the Pirouette workspace, then let go; a window appears showing 
a table of values.
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Figure 3.4
The OCTANE20 data

set

EXAMINE THE DATA
The Pirouette spreadsheet organizes data with samples presented as rows. Each sample’s 
name is shown as the row label (for example, the name of the first sample is S001). Mea-
sured variables are displayed as columns, and the variable names are presented as the col-
umn titles (for example, 900 is the name of the first variable). You can navigate through 
the spreadsheet using the scroll arrows to see the absorbance data for the different sam-
ples and variables (wavelengths). Scrolling to the extreme right side of the spreadsheet 
also shows the single dependent variable, labeled Octane.

Note: In most spectroscopy files, you will find it faster to jump to the dependent variable 
column rather than use the mouse to reposition the elevator box (or scroll). To 
jump to the dependent variable column, press the Y button on the Pirouette rib-
bon.

We can easily convert the spreadsheet view to show the spectra graphically by clicking 
on the line plot icon. This converts the spreadsheet into a spectral view as shown below.

• Click on the Line Plot button 
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Figure 3.5
Spectral view of the
OCTANE20 samples

The line plot that is produced is the traditional spectral view of the data. The only differ-
ence is that the x-axis is labeled with the generic name “Variable”. To label this axis for 
the application,
• Select the Windows > Preferences > Chart > Label Attributes menu item

• Change the Variable Axis Label to “Wavelength”

• Close the Full Data view you have open and drag a new copy of Full Data

• Switch to a line plot to display the plot with the new x-axis label

Simply by plotting the data, it is clear that there are two distinct groups present. Four of 
the spectra show higher absorbances in the range of 1400 to 1600 nm. This will be further 
elucidated in the “Exploratory Data Analysis” on page 3-7.
• Move the mouse cursor to the ribbon and select the Identification tool

The mouse cursor appears in the plot as a question mark and allows you to identify any 
of the lines in the graph by positioning the dot of the cursor over the position of interest 
and clicking the mouse button. The line identification will appear as long as the mouse 
button remains depressed, and the information will update as you move the cursor. As an 
option, you can investigate the line plot in further detail using the magnifying glass cur-
sor. To access this enlarging tool:
• Move the mouse cursor to the ribbon and select the magnifier tool

• Click-drag to draw a rectangle on screen

• Release the mouse button to magnify the area

• Click in the plot area using the right mouse button to return the plot to its original scale

The default display is with all samples shown in the plot. This allows us to ensure that 
the data is of reasonable integrity and that there are no obvious problems before we start. 
Using the Selector Tool, we can remove some, all, or specifically select individual spec-
tral samples for viewing. Selecting this tool will bring a context sensitive dialog box to 
the screen.

• Click on the Selector button in the ribbon 
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3 Regression Tutorial: Exploratory Data Analysis
Figure 3.6
The Selector dialog

box

The scrolling list on the left contains the sample names for all samples not currently plot-
ted (none are listed); the list on the right shows those currently in the plot, which now 
includes the names of all the samples. Removing and then re-adding samples to the view 
is easy: simply double-click on a sample name or highlight a sample (or samples) and 
click on the Remove button. To select a number of samples at once:
• Click on the first sample in the list of available samples to highlight it

• Scroll to any position of the desired list by moving the elevator bar at the right side of 
the list

• Hold the Shift key down and click on the last sample name to be moved (as demon-
strated below)

• Click on the Remove button to move the affected spectra

• Click on the OK button to exit the dialog box and plot the data

Figure 3.7
Removing selected

spectra from the plot
view

Exploratory Data Analysis

The first step in the multivariate analysis of our data set is to employ two general pattern 
recognition algorithms to explore the data. These techniques provide information that ex-
tends beyond simple examination of the data as line plots or selected 2-D and 3-D scatter 
plots.

SET UP
Exploratory data analysis primarily consists of Hierarchical Cluster Analysis and Princi-
pal Component (Factor) Analysis methods and examination of the graphics that these 
methods provide for suggestions of relationships between variables, between samples 
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3 Regression Tutorial: Exploratory Data Analysis
and possible outliers. Prior to performing the exploratory data analysis, we need to set 
any data processing options that we want applied to the data (for a discussion of these 
options, see “Preprocessing” on page 4-26). Preprocessing options are set for the algo-
rithms in the Configure Run dialog box.
• Click on the Process menu

• Click on the Run menu item as shown in Figure 3.8.

Figure 3.8
Selecting Run from
the Process menu

The dialog box for selecting the data processing options and their control configurations 
will be displayed. This will allow you to customize the processing parameters for the ex-
ploration algorithms, HCA and PCA.

When the dialog box appears on screen, the HCA algorithm (upper left list) is initially 
highlighted, and the available options are presented in a dialog window to the right. NIR 
spectral data should be centered prior to analysis. To do so,
• Position the mouse over the drop down list to the right of “Preprocessing”

• Click on Mean Center to highlight and select that option (it may already be selected)

Mean Center will now appear in the box, indicating the selected preprocessing option. 
The Distance Metric option listed is Euclidean. There are seven alternative clustering 
techniques available (for additional detail, please see “Linkage Method Definitions” on 
page 5-2). For this exercise, we want to use the Group Average method.
• Position the mouse over the drop down list to the right of “Linkage Method” and click

• Drag the mouse so that Group Average is highlighted and release

With all HCA processing options now selected,
• Click on the Add button in the lower left corner of the Configure Run dialog window

and this algorithm is added to the sequence order of methods for data analysis. Repeat 
this process for Principal Component Analysis (PCA) so that the processing will be con-
sistent and allow comparisons:
• Click on the PCA algorithm in the upper left of the dialog box to bring the PCA options 

to the display

• Select Mean Center as the preprocessing option, as done for HCA

• Set the Maximum factors to 7

• Click on Add to add PCA to the Run with selected and default options as shown below
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Figure 3.9
Adding PCA to the
run configuration

HCA and PCA are now set up to be run on mean centered data. These settings will remain 
active until they are changed or until a new data file is loaded.

Note: If you also wanted to run a different clustering technique (say Flexible Link), you could 
change the clustering option in the Options area to Flexible Link after rehighlighting HCA 
in Algorithms, add this method/option to the Run Configuration List, and you would have 
both clustering results when complete.

RUNNING THE EXPLORATION ALGORITHMS
With the two algorithms added to the Run Configuration with the chosen options, all that 
is required to initiate processing is to click on the Run button at the bottom of the win-
dow.
• Move the cursor to the Run button

• Click with the mouse to start processing all algorithms added previously

During the processing time, a Run Status message window opens up and displays the 
progress while the program is working. This window allows you to abort after a run if 
necessary. Upon completion of the processing of an algorithm, this status screen will 
change to indicate that the processing is complete. At the end of all runs, the status win-
dow will close (unless a run problem was encountered).
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3 Regression Tutorial: Exploratory Data Analysis
The calculated objects for the selected algorithms are displayed in chart windows stacked 
on top of the original Full Data spreadsheet display (if your Maximum Windows prefer-
ence is set to zero, drag out the HCA results to form a new chart window). The individual 
algorithm results can be viewed in turn or rearranged in the display area to examine a va-
riety of results and different views. We will first examine the HCA results.
• Click on the Full Data:HCA name in the title bar at the top of its window to bring the 

display to the foreground

• Double-click on the dendrogram plot to bring its subplot to fill the window

Figure 3.10
HCA results

The HCA results are presented in the form of a plot called a dendrogram. This display 
organizes samples in the data set based on their multivariate similarity (for details, please 
see “Distance Measures” on page 5-2). This graphic is presented with the pointer tool ac-
tivated. We will use this pointer to set the similarity cursor and explore some of the de-
tails of the dendrogram.
• Position the cursor over the vertical dashed line near the inverted caret (or v), under 

the 0.0 mark, where it turns into a double arrow.

• Click-drag on the line to the left until a similarity value of about 0.78 is achieved

• Release the mouse button

The color bar display on the left of the dendrogram changes into separate colors that dis-
tinguish samples grouped on the same branches cut by the similarity cursor (see below). 
This position has cut three branches and we can begin to explore the membership on 
each.

Note: At any time, we can reposition the similarity cursor at a different value to explore other 
groupings that result. If a particular grouping is of sufficient interest, the assignments can 
be saved to the main data file by selecting the Edit menu and the Activate Class menu 
item or by hitting the key combination Ctrl + K.
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Figure 3.11
Setting the similarity

The dendrogram gives information about individual gasoline samples in the data set and 
their similarities to other samples that may suggest natural groupings. It is advantageous 
to compare the dendrogram clusters with the PCA scores plots to examine the extent to 
which apparent groupings are exhibited in both views.

DATA INTERPRETATION
For the next few minutes, let’s work with the data and the displays to achieve a better 
understanding of how data can be handled within Pirouette. First, it is important to note 
that all of the data displays in the program are linked such that interaction with the data 
displayed in one window may affect other windows.
• Click on the window showing Full Data: PCA to bring it to the foreground

Twelve objects comprise the PCA window as shown below.

Figure 3.12 Display
of PCA results
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Group Average
CURSOR

Similarity: 0.78
NODE

Similarity: 0.00
Distance:  0.5
Descendants

Group Average
CURSOR

Similarity: 0.78
NODE
3–11



3 Regression Tutorial: Exploratory Data Analysis
The collection of results from PCA include a multivariate description of the data matrix 
in the form of scores and loadings and associated variances, as well as a variety of diag-
nostics useful for evaluating the analysis. We will initially examine the interactive link-
age between HCA and PCA scores views to illustrate the more distinctive samples.
• Click the mouse on the scores plot (the third subplot) to make it active

• Click on the Zoom button in the tool bar 

• Click on the Pointer button 

• Click and drag the mouse within the scores plot to create a box around the four data 
points that are separate from the bulk of the samples

• Release the mouse button to highlight the aberrant points, as shown next

Figure 3.13
Click-drag-release to

select contiguous
points

Immediately upon release of the mouse button, the samples highlighted in the scores plot 
will also be highlighted in all other plots containing sample information (in this case the 
dendrogram). This effect is noted in the following figure. Click on the dendrogram win-
dow to bring it to the foreground. Note that points selected in the scores plot are high-
lighted as well in the dendrogram and occur together on the lowest major branch, highly 
dissimilar from all others.

Factor 1 (86.2%)

Factor 2 (9.5%)

Factor 3 (3.5%)
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3 Regression Tutorial: Exploratory Data Analysis
Figure 3.14
Points highlighted in

the dendrogram

The scores plot is a 3D mapping of the sample data. To take advantage of this feature, we 
will employ the Spinner tool.
• Click on the PCA window to make the scores window active

• Move the cursor to the ribbon and click on the Spinner button 

• Return the cursor to the scores plot and click-drag the Spinner across the plot from 
right to left to rotate the data points, as shown here

Figure 3.15
Rotating the scores

gains a different
perspective

The first set of four outliers in the data were identified immediately upon display of either 
the dendrogram or the scores plot. By rotating the plot, we can see a second set of possi-
ble outliers separate from the majority of the samples. To highlight these samples in ad-
dition to those highlighted previously,
• Click on the Pointer button in the ribbon

• Move the cursor back over to the scores plot

• Hold the Control key down as you click-drag forming a rectangle around this second 
set of (maybe aberrant?) points as demonstrated next
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Group Average
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Similarity: 0.7
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Factor 1 (86.2%)

Factor 2 (9.5%)

Factor 3 (3.5%)
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Figure 3.16
Highlighting a
second set of

possible outliers

The linking between the scores view and the dendrogram confirms the status of these 
eight samples as belonging to two separate groups of possible outliers; the samples can 
be seen as distinct from the main body of data as well as being distinct from one another. 
This is illustrated in the next figure.

Figure 3.17
Linking between
scores plot and

dendrogram view

The dendrogram can also be manipulated to emphasize outlier samples. Because we had 
previously set the similarity cursor at 0.78, we have defined several potential groupings 
and individual distinctive samples. The dashed line cuts 3 branches. One set of four sam-
ples (at the bottom of the displayed dendrogram) is most unique and represents the spec-
tra we had noted earlier as unusual (see Figure 3.5). A second set of four samples at the 
top of the dendrogram are more similar to the bulk of the gasoline samples in this study, 
but are still somewhat distinct from the majority. These three subdivisions of the data are 
indicated by different colors in the color bar at the left side of the dendrogram display 
(created when we moved the similarity cursor in Figure 3.11). We can use this subdivi-
sion to color identify the samples on the scores plot and add an identifying class column 
in the data table, by using the Activate Class feature.
• Select the Activate Class option from the Edit menu (or use the Ctrl-K keyboard 

equivalent)

Factor 1 (86.2%)

Factor 2 (9.5%)

Factor 3 (3.5%)
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Figure 3.18
Activating a class to

map dendrogram
colors to other views

With this action, a new class variable has been incorporated into the data file that will 
remain with the file when saved. The second effect is that the activation of a class vari-
able from the dendrogram view colors the data points in all other views. Pirouette flags 
the name of the active class in the message area at the bottom of the Pirouette window as.

Figure 3.19
Message area

showing the name of
the active class

The default name of the class created from the dendrogram view is established by merg-
ing the name of the data object that was used to create the dendrogram with the similarity 
value marked by the cursor position. In this case, the dendrogram was built using the 
“Full Data”, and the position of the similarity line would round to 0.78. Thus, the default 
class name is “Full Data78”; the name can be modified by editing in a spreadsheet view 
of the data. For additional detail, please see “Creating Class Variables” on page 12-27.

As mentioned above, the action of activating a class from the dendrogram view also maps 
the colors defined by the dendrogram into all other views. Because the scores plot is sam-
ple-oriented, the active class will repaint the colors in the scores view to correspond as 
shown below.
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Figure 3.20
PCA scores

recolored to reflect
the active class

THE NEXT STEP: CALIBRATION
The exploratory data analysis has shown us that there is structure to the octane data and 
that there appear to be three groupings in the collection of 57 samples. The reason for 
concern about the clustering of the octane data is the following question:

Do these clusters represent different populations of gasoline samples or do they indicate 
that this training set is not fully representative of all possible samples?

In either case, by retaining all samples during calibration, the final model will contain er-
rors that relate to this inhomogeneity. The ideal case is to have a scores plot that shows 
a homogeneous cloud of points and a dendrogram that shows very little cluster tendency. 
As it turned out, when this data set was originally analyzed, we contacted the refinery and 
found that the four most obvious outlying gasoline samples contained alcohol, while the 
four less obvious outliers contained MTBE (ether) as octane boosting agents. These ox-
ygenates were present at a level of roughly 10% by volume.

If there were enough samples in each of the two unusual groups (we would like to see 
about a dozen or so samples in each category in order to be assured of reasonable statis-
tical accuracy), the course of action would be to run a classification analysis (KNN and/
or SIMCA) and then develop separate calibration models for each of the three groups.

We will retain the outlying gasoline samples for the first pass of calibration in order to 
demonstrate how outliers are detected in PCR and PLS. To create the most representative 
model, the outliers will then be removed and the resulting model will be tested on new 
data.

Calibration and Model Validation

To process the data, we can build either Principal Component Regression (PCR) or Par-
tial Least Squares (PLS) regression models of the data, or both. We could compare the 
results of the two modeling techniques and choose to save one or both as a model for fu-
ture prediction use. Several interpretation concepts will be introduced which are not com-
pletely described here, in order to keep this walkthrough reasonably brief. As questions 
arise, please refer to Chapter 7, Regression Methods.

Factor 1 (86.2%)

Factor 2 (9.5%)

Factor 3 (3.5%)
3–16



3 Regression Tutorial: Calibration and Model Validation
SET UP
The first task is to set the processing techniques to be used for the analysis. To be con-
sistent with the exploratory analysis, we will choose to mean center the data:
• Click on Process in the menu bar

• Click on the Run item in the Process menu

• When the dialog box appears on the screen, click on the PLS Algorithm

• Choose the preprocessing option Mean-center

• Click on Add to include PLS in the Run Configuration

Repeat this selection process for PCR so that the processing will be consistent between 
the two methods and allow comparisons:
• Click on the PCR Algorithm

• Select Mean-center

• Click on Add

The PLS and PCR calibration algorithms are now set up to be run after first mean cen-
tering the data.

CALIBRATION WITH PCR AND PLS
At this point, no further options need to be set. Close all windows except the Object Man-
ager. Then, to perform a calibration,

• Click on the Run button 

The algorithms are processed in the order they are entered in the Run Configuration dia-
log box; in this case PLS is processed first, followed by PCR. If necessary, drag the PLS 
results icon, then the PCR results icon, to the desktop so that all of their results are dis-
played (and close any other results windows that may still be open). In Figure 3.21, we 
have placed the PLS and PCR results side-by-side using the steps as follows:
• Minimize the Object Manager window

• Double click on the center subplot of each window to zoom the main results

• Select the Tile option from the Windows menu

Figure 3.21
The calibration

results screen, for
PLS and PCR

Each of the two results windows contain three sections. On the top left, you find a plot 
of the data after preprocessing; in this case we specified mean centering, so the data has 
the average values at each wavelength subtracted to highlight the spectral differences. 
Below this plot is a notes field that summarizes the processing performed. The multiplot 
shown on the right contains all of the objects computed during the processing of each al-
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3 Regression Tutorial: Calibration and Model Validation
gorithm. The PCR algorithm generates eleven objects and PLS builds thirteen. These ob-
jects are used to interpret the quality of the models for doing routine prediction. For the 
purposes of this walkthrough, we will describe the evaluation of the data based on four 
PLS objects (Figure 3.22). Details of all objects generated during regression can be found 
in Chapter 7, Regression Methods.

To prepare a window with the four results desired,
• Windows > Close All Windows

• In the Object Manager, double-click on the PLS folder

• Double-click on the Y1/Octane folder

• Click on the Factor Select item

• With the Control key held down, click on the Score, Outlier Diagnostics and Y Fit 
items

• Position the cursor over one of the selected items, then drag to a clear space in the 
Pirouette workspace

A User window will be created like that in the following figure.

Figure 3.22
Four PLS objects

By running PLS (and PCR), we have performed a calibration, and a model has been au-
tomatically created. Models are managed as a part of the Pirouette file and are also able 
to be saved as separate files in either binary or ASCII form (see “Saving the Model”).

DATA INTERPRETATION
The factor select plot in the NW window (Figure 3.22 and enlarged in Figure 3.23 below) 
shows the variance dropping significantly as more principal components are included in 
the regression. Most of the model improvement occurs with the inclusion of four princi-
pal components, where the cursor is positioned in the figure, although note that the Pir-
ouette algorithm makes a first suggestion of using ten components (as marked by the 
open circle on the line plot. This suggests that outliers are a problem.
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Figure 3.23
The variance

(eigenvalue) plot

The scores plot shows a distribution similar to the one found during the exploratory anal-
ysis phase (PLS scores do differ from the PCA scores; see “Scores” in Chapter 5). Let’s 
take a closer look at these outliers by rotating the scores plot:
• Click on the unzoom button in the ribbon

• Double-click on the scores plot to zoom it to full window status

• Select the Spinner tool from the Pirouette ribbon to view the outliers 

• Rotate the scores to accentuate the differences between outliers and non-outliers

• Turn off the labels by clicking the Label button 

Figure 3.24
PLS scores

Note the coloring of the points is retained from the activation of a class variable (refer to 
Figure 3.18).

Despite the inclusion of obvious outliers, the model predictions fit closely to the actual 
octane values. The quality of the regression fit can be seen by comparing the actual oc-
tane values with the PLS fitted values.
• Click on the unzoom button in the ribbon
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• Double-click on the Y Fit plot to zoom it to full window status

Figure 3.25
The fit of predicted

versus actual octane
values

We had the suggestion, both in the error plot (where the number of components suggest-
ed by the algorithm to fit the data was high) and in the scores (where we observe three 
distinct clusters of data points), that there are some unusual samples in the data set. The 
studentized residuals plotted against leverage (Figure 3.26) reinforces the knowledge that 
the eight samples we flagged before are too unusual to be included in any final model 
(see “Outlier Diagnostics” in Chapter 7). Samples of high leverage have an undo influ-
ence on the equation of the regression line used to model the property of interest (in this 
case the octane rating).

Now that we have examined the outliers more closely, it is time to eliminate them from 
our model. The easiest method of selecting outliers is to select them from the residuals 
plot.
• Click on the unzoom button in the ribbon

• Double-click on the Outlier Diagnostics plot to zoom it to full window status

• Click-drag a selection box around the points that have leverage values above the cut-
off (denoted by a vertical line) as in Figure 3.26

Figure 3.26
Residual versus
leverage plot for

identifying outliers
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• Release the mouse button to leave the high leverage samples highlighted

Figure 3.27
The highlighting of

outliers in the
leverage plot

We will now create a subset of the original data that does not include the outlying sam-
ples identified above. This subset, built by excluding some of the samples of the original 
is also referred to as an exclusion set.
• Select the Create Exclude option under the Edit menu (or press the Ctrl-E key com-

bination)

Figure 3.28
Creating a subset

(exclusion set) of the
data

A subset of the original data has now been created; this subset excludes the eight outliers. 
Creation of a new subset can be verified in the left side of the Object Manager, where the 
default subset name “Unnamed” is displayed under the Full Data icon.
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3 Regression Tutorial: Calibration and Model Validation
Figure 3.29
The Object Manager

organizes subsets of
the data file

Because Pirouette can manage a nearly unlimited number of subsets, it is useful to name 
the new set appropriate for the data it contains.
• Click on Unnamed in the Object Manager

• Choose the Rename option from the Objects menu (Ctrl-N)

Figure 3.30
Renaming a subset

• Type No Outliers as the new name of the subset (spaces in the name are OK)

• Click on OK to establish the new subset name

You will find, on exit from the dialog box, that the subset name will take on the newly 
assigned name.

Figure 3.31
The Object Manager

reflects all name
changes

We can now utilize the No Outliers subset, without any changes in the preprocessing op-
tions for PLS and PCR, to quickly repeat the calibration.

• Choose the run option by selecting from the ribbon 

and we can set up to rerun PLS and PCR using the Run/Configure dialog box. The op-
tions will still be set from the previous analysis on the full data set, so we need only:
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3 Regression Tutorial: Calibration and Model Validation
• Select the No Outliers subset from the listing of exclusion sets available

• Click on PLS

• Click on the Add button

• Click on PCR to select that algorithm

• Click on the Add button

The run is now configured as modeled in the following figure.

Figure 3.32
Rerunning PLS and

PCR on a subset

• Click on the Run button to start the analysis

When complete, the Object Manager will reflect the newly created objects.
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3 Regression Tutorial: Calibration and Model Validation
Figure 3.33
The Object Manager

displaying
algorithms and time

stamps

As before, PLS and PCR are processed in the order entered in the Run Configuration di-
alog box and a status screen is brought to the screen. When completed, each algorithm 
which is run can be displayed in its own window. Also, as before, we will concentrate on 
four of the diagnostic displays for PLS (Figure 3.34 is analogous to Figure 3.22’s results 
for the whole data set).

Figure 3.34
PLS results with
outliers removed

The results of the analysis are significantly improved over that seen when the outlier sam-
ples were included.

Let’s look more closely at the data in the NW window to get a better feel for the number 
of principal components necessary for modeling octane. Although Pirouette attempts to 
estimate the proper number of principal components by using an F test (see “Estimating 
the Optimal Number of Factors” in Chapter 7), the choice is not always optimal. The op-
timal number of PCs (principal components) to use in the model involves judgment by 
the user: if too few components are used, we will not have adequately modeled the avail-
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3 Regression Tutorial: Calibration and Model Validation
able information to permit reliable future predictions; if too many components are cho-
sen, the model will contain noise as well as information, and the predictions may be less 
reliable.

For example, we can change the number of principal components included in the model 
and see the effect on predictions and outlier diagnostics.
• Click-drag a second copy of the PLS Factor Select object from the Object Manager 

onto the Pirouette desktop

The line plot will show the diamond marker on the 9 PC position. To change the number 
of PCs included in the model:
• Click the mouse while positioned above a different number of PCs (as shown in the 

following figure)

and the diagnostics will update for every other window. You will now see the prediction 
plot and the residuals plot update to reflect the new level of model complexity (here at 4 
components).

Figure 3.35
Setting a 4

component PLS
model

Changes to the model complexity can be done using your judgement or experience with 
past data sets. Better is to perform a validation of the data, outlined here and explained 
in more detail in Chapter 7, Regression Methods.

Any model that we create is dependent on the number of principal components. By click-
ing on the variance plot, the two windows dependent on the number of PCs (i.e., the pre-
dictions and residuals plots) will change to reflect the new model. The predicted-versus-
actual plot and the residuals plot are updated. Note the number of principal components 
used for the model is displayed in the lower right portion of each window.

An ideal evaluation of the PLS model would be to use an independent set of data. Here, 
we will instead run an internal (cross) validation which will approximate results obtained 
with external validation.

To start a leave-one-out cross validation, we return to the Run Configuration dialog box.
• Click on the Run Configure button or select Run from the Process menu

• For the PLS algorithm, choose the No Outlier subset and set the validation options 
as shown here
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3 Regression Tutorial: Calibration and Model Validation
Figure 3.36
Setting the options
for cross validation

• Click on the Run button

This processing will take as long as several seconds to complete depending on the speed 
of your computer. Leave-one-out cross validation does what it sounds like it does; it re-
moves one of the samples from the training set, performs a PLS regression on the remain-
ing samples, predicts the octane value for the left-out sample and then tallies the error. 
Each sample is removed in this manner one time, therefore, with 49 samples in the train-
ing data, the PLS algorithm will be run 49 times in the cross validation step.

When complete, the cross validated PLS results can be displayed on screen.

Figure 3.37
Cross validated PLS

results

You can see that the algorithm’s estimate of the best number of principal components to 
include in the model has changed, decreasing from 9 to 4.
• Double-click to zoom the error object (in the first subplot)
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3 Regression Tutorial: Calibration and Model Validation
and you can see the prediction errors fall for the first 6 principal components. If more PCs 
are included in the model, the error starts to rise, presumably because at this point we are 
starting to incorporate noise in the model.

Figure 3.38
Standard error of

validation

Note that the algorithm built into Pirouette chose 5 PCs, rather than the absolute mini-
mum error at 6. The algorithm opted for fewer PCs after determining by F-test that the 
model improvement was not significant enough to justify the more complex model.

You can still override the Pirouette choice; the position of the diamond cursor will con-
trol the model complexity as we save the model for future work (and the next section of 
this walk-through).

SAVING THE MODEL
Pirouette keeps a record of all models that have been generated for a particular data file. 
These models are stored and managed within that file by the program. For this walk-
through exercise, we have built 6 different models so far: PCA, PLS and PCR on the Full 
Data plus two PLS and one PCR on the No Outliers subset. Pirouette allows you to save 
one or more of these models as a single file.

In order to use the model we have just created, we need to save the model file as a sepa-
rate file on disk. The model-save employs the what-you-see-is-what-you-get approach; 
the model parameters displayed on the screen at the time of the save will be the model 
saved: in this case, a 4-component PLS model. To save the model:
• Pull down the File menu and choose the Save Models option
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3 Regression Tutorial: Calibration and Model Validation
Figure 3.39
Saving a model

and the model save dialog box will come to the screen. As implied above, the action of 
saving a model requires three decisions:

Choosing which model;

Choosing a name for the file; and

Choosing a model format (binary or ASCII)

For the purposes of this exercise,
• Select the second PLS model run on the No Outlier subset in the list at the bottom of 

the dialog box

Figure 3.40
Setting model type

and name
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3 Regression Tutorial: Calibration and Model Validation
• Click on the Second NO Outliers PLS model to select it

• Click on the Save Selection button

Note that clicking on an entry in the Available Models list produces a display of infor-
mation about that model at the right of the dialog. Choosing save Selection will bring up 
a standard Windows dialog box.

Figure 3.41
Model information

• Type OCTANE.PMF into the edit field of the dialog box as shown

• Click on the Save button

The PLS model based on 49 samples has now been created on disk and is available for 
future predictions. The next phase of this walkthrough will use this model file to make 
predictions on another data file.

PREDICTION OF UNKNOWNS
A data set has been collected to allow you to test predictions made by the model we have 
just created. In this section, we will open this new data set, predict the octane values and 
compare the results to those generated by the octane engine.The test set 
(OCT_TEST.DAT) contains 10 new spectra of different gasoline samples.
• Choose the Open Data option from the File menu

• Select the OCT_TEST.DAT file from the list of ASCII format files in the DATA sub-
directory

• Click OK

• Choose the Open Model option from the File menu
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3 Regression Tutorial: Calibration and Model Validation
Figure 3.42
Opening a model file

The Open Model dialog box will appear on the screen as shown below, giving you the 
choice of models created in this and in prior analyses.

• Choose the OCTANE.PMF model file by clicking once on the name with the mouse

• Click on OK to load the model into Pirouette

Figure 3.43
The Open Model

Dialog Box

To predict the octane values of these 10 samples,
• Select the Predict option from the Process menu
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3 Regression Tutorial: Calibration and Model Validation
Figure 3.44
Selecting the Predict

option

A dialog box will appear on screen that will allow you to configure the prediction much 
as algorithms are configured for processing within Pirouette. This configuration is shown 
in the next figure.

Figure 3.45
Configuring the PLS

prediction

• Make the selections of exclusion set (in this case the Full Data) and the model

• Click on Add to create the run list

• Click on the Run button to process

Just as in running the calibration algorithms, the prediction results will appear as a new 
window of the Pirouette display, listing a single octane value for each sample. Had we 
saved both a PLS and a PCR model for the original octane data, both predictions would 
appear. Note that you do not need to specify mean centering as a preprocessing option; 
the Pirouette model contains this information, so the centering is done automatically.
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3 Regression Tutorial: Calibration and Model Validation
Figure 3.46
Results of the PLS

prediction

The results appear in a four-section display. On the top side are the prediction values plus 
a table giving the parameters of the prediction (SEP, PRESS, r and # of factors). The low-
er left section contains graphics showing diagnostics such as the Y-Fit, X-residuals and 
probabilities (see “Running PCR/PLS” on page 7-14 for a more complete explanation of 
the diagnostics).
• Double-click on the upper left window to zoom the table with the predicted octane re-

sults

Figure 3.47
Tabulated PLS

prediction results

These results can be compared to the engine values which are contained in the 
OCT_TEST data file. 
• Click-drag the Y Fit object to make a new window

• Click on the Table icon in the ribbon to convert the plot to a tabular view.

The comparison is shown in the following figure.
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3 Regression Tutorial: Review
Figure 3.48
Octane predictions

and residuals using
a PLS model

The Y-fit object contains a column with measured values if they exist in the file. So, col-
umn one above lists the values measured in the lab for these gasoline samples, column 2 
shows the result of PLS predictions, and column 3 shows the difference between the two. 
The last two columns provide an estimate of the error bar for the PLS predictions. With 
the analysis complete, you can quit Pirouette or proceed to the analysis of new data.

Review

In this section, we used spectra to classify gasoline samples based on the presence or ab-
sence of additives, then created and optimized a model of the outlier-free data to be used 
in subsequent predictions. We have shown that factor-based methods (such as PLS and 
PCR) can competently model data collected on unleaded gasoline samples for the pur-
pose of predicting the pump octane rating of gasoline.
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ultivariate data analysis, as powerful as it may be, can be daunting to the unini-
tiated. It has its own jargon and incorporates concepts which at first glance seem 
strange. Typically, a novice user becomes comfortable with the multivariate ap-

proach only after a period of confusion and frustration. Why bother? The rationale be-
hind multivariate data analysis is simple: univariate methods, while well–understood and 
proven for many applications, can sometimes produce misleading results and overlook 
meaningful information in complex data sets.

Univariate methods were developed for univariate data. Today, however, data are rou-
tinely acquired from spectrometers and chromatographs, multichannel instruments 
which generate many measurements for each sample analyzed. Applying univariate 
methods to such data is tantamount to discarding all but one of the measurements. While 
some problems may yield to a thorough statistical analysis of a single variable, this ap-
proach has several drawbacks when applied to multivariate data. First, it is tedious to 
look for the one needle in a veritable haystack of variables. Second, it is incomplete if 
multivariable relationships are important. Thus, a multivariate approach is mandated by 
the structure of the data set. If the measurements are numerous and/or correlated, pro-
cessing them as a unit is advised.

Overview

Proper data preparation is integral to a successful multivariate analysis. The wise user 
will address a number of issues before embarking on the computational portion of the 

M
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4 Preparing for Analysis: Overview
project. This chapter suggests a strategy for planning a multivariate analysis and then de-
tails ways of preparing data. Of the steps involved in performing a multivariate analysis 
listed below, the first five are addressed in this chapter.
• Define the problem - Surprisingly enough, problem definition is an often neglected 

part of the analysis process. The purpose of collecting an infrared spectrum is not to 
create and store a piece of paper. Instead, it may be to determine if the sample is of 
acceptable quality. Before looking at the data, decide what questions you hope to an-
swer. Examine the scientific literature or consult local experts who can offer sugges-
tions about your proposed activities. Perhaps your problem has been posed before 
and you can learn from previous investigations.

• Organize the data - Devise a strategy for assembling and organizing the necessary 
data. Your project requires a collection of samples. How many are available? Will 
more become available later? If you need to combine various data sources, are the 
file formats compatible?

• Check data validity - Verify that the computerized version of the data agrees with 
the original measurements. Decide how to handle missing data values.

• Visualize the data - Examine the data with graphical presentations. For example, 
use scatter plots to look for trends, clusters, correlation and invariance. Extremely un-
usual samples are apparent in such plots. You may also get a feel for the structure of 
the data.

• Transform/preprocess the data - It is often necessary to “adjust” a data set before 
running a multivariate algorithm. For example, variability due to sample size differ-
ences in chromatography can be minimized by normalizing each sample. Transforms 
such as differentiation can emphasize spectral features and compensate for drift. 
Scale and range differences are addressed by preprocessing. When one variable’s 
magnitude is much larger than others, this variable alone may dominate subsequent 
computations based on variance or distance. Sometimes this dominance is appropri-
ate and no preprocessing is necessary. Often, however, some form of preprocessing 
is warranted to mitigate the influence of variable ranges and magnitudes.

• Perform exploratory analysis - Exploratory analysis is the computation and graph-
ical display of patterns of association in multivariate data sets. Exploratory algorithms 
reduce large and complex data sets to a suite of best views. They give you insight 
into sample or variable correlations. Pirouette’s two exploratory algorithms, Hierarchi-
cal Cluster Analysis (HCA) and Principal Component Analysis (PCA), are discussed 
in Chapter 5, Exploratory Analysis. Do an exploratory analysis on every problem be-
cause the process is relatively quick. Besides exposing possible outliers, it can tell 
you if your data possess sufficient modeling power to warrant further investigation.

• Create a model - A fundamental reason for collecting data is to develop predictive 
classification and regression models which characterize future samples. Classifica-
tion in Pirouette is the computation and the graphical display of class (or category) 
assignments based on multivariate similarity. Pirouette’s three classification algo-
rithms, K-Nearest Neighbors (KNN), Soft Independent Modeling of Class Analogy 
(SIMCA), and PLS-Discriminant Analysis (PLS-DA) are discussed in Chapter 6, Clas-
sification Methods. A large number of applications involve predicting a difficult to 
measure value from easier measurements by using a regression algorithm to estab-
lish the relationship between the difficult and easier measurements. Pirouette’s two 
factor-based techniques, Principal Component Regression (PCR) and Partial Least 
Squares (PLS), are discussed in Chapter 7, Regression Methods, as is the Classical 
Least Squares (CLS) algorithm. PLS and PCR can also be used within Pirouette for 
locally weighted regression (LWR). Finally, there are two regression-based unmixing 
algorithms: Alternating Least Squares (ALS) and Multivariate Curve Resolution 
(MCR) discussed in Chapter 8, Mixture Analysis.
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4 Preparing for Analysis: Defining the Problem
• Examine computed results - After running an algorithm, examine carefully its re-
sults. They tell you if the analysis was successful or pinpoint reasons for its failure. 
Compare these results with your expectations and develop new perspectives on the 
underlying meaning in your data.

• Validate the model - To determine the reliability of a model, it is necessary to include 
a validation step. Although a model can be used for prediction immediately after its 
creation, whenever possible we recommend that its reliability first be investigated by 
a process called validation. Validating PCA models is treated in “Model Validation” in 
Chapter 5; see “Validation-Based Criteria” in Chapter 7 for a discussion on validating 
regression models.

• Use the model - Compare the results with previous expectations. Are they in agree-
ment? Has your knowledge improved as a result of the analyses? Interpretation can-
not be supplied by the computer. A human analyst is ultimately responsible for 
ascribing meaning to results.

• Update the model - If the model is in use for some time, or is to be used on another 
instrument or in another laboratory, is it still performing reliably? If necessary and fea-
sible, it may be necessary to totally replace the data used to create the model. If this 
is not possible, the model may still be useful by applying a calibration transfer (see 
“Calibration Transfer” on page 4-33).

Defining the Problem

Begin by deciding the general nature of your project. Is it an exploratory problem, a clas-
sification problem, a regression problem or a combination of these types?

In some data analysis scenarios, no prior knowledge regarding trends, groups or relation-
ships exists, suggesting the need for exploratory analysis. Here the basic consideration is 
whether an inherent structure in the data implies relationships amongst samples and/or 
variables. Predefined class assignments for samples or measurements of properties of in-
terest may not be available. Part of exploratory analysis is a search for sample groupings 
which might stimulate a need for more data collection. Another part is the identification 
of unusual samples. The importance of the variables in groupings and variance patterns 
can also be investigated. Example exploratory questions are:
• Can my chromatography results distinguish region of origin for olive oils?

• Which process line measurements are affected most by batch-to-batch variation?

In some instances, the issue is to differentiate among discrete categories, a classification 
or pattern recognition problem. Here problem definition becomes more distinct. The key 
concerns are how accurately can we distinguish between categories and which variables 
are most important for the distinctions. Example classifications questions are:
• Can we routinely identify bacteria genus and species from fatty acid profiles?

• Is it possible to use trace organic analysis to match and determine fire accelerant 
source in arson cases?

Finally, the goal may be to determine composition or indirectly assess a physical/chem-
ical property, which is a regression problem. Here the focus is on accuracy, precision, 
and, as always, the importance of variables. Example regression questions are:
• Is it possible to use a spectrometer to predict water content in cheese to within 0.5%?

• Can we monitor extent of polymerization as the product is forming?
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4 Preparing for Analysis: Organizing the Data
Once you have determined your problem type, you are ready to inquire into the data his-
tory: how and when were they generated, what types of measurement methods were used, 
what levels of precision pertain to each variable, etc. Have previous analyses been per-
formed? Does pertinent a priori information exist? How were the samples stored? Are 
the most recent measurements different from those taken earlier? Has the instrumental 
performance changed during the sample collection process? Was experimental design 
implemented? Obviously data quality impacts the ultimate quality of conclusions drawn 
from data analysis. It is always a good idea to know as much as possible about the pro-
cedures which gave rise to the data. Having said this, we must confess that sometimes 
the questions posed above are addressed only after multivariate analysis suggests that 
something more is “going on” than was first thought.

Organizing the Data

It is usually most convenient to place all data into a single file which may require con-
catenating data from a variety of sources. The advantage of this accumulation is clear: 
the more samples and variables, the better your chance of understanding the chemical/
physical processes underlying the data. Disadvantages exist as well: data from disparate 
sources can be difficult to assemble and unwieldy to manipulate. Be advised that getting 
all of your data into a single computer-readable file is often the most time-consuming 
step of the project.

ASSEMBLING THE PIECES
Pirouette allows you to assemble large data sets through a merge facility—adding either 
new samples or new measurements on old samples. Moreover, you can paste data into a 
Pirouette spreadsheet via the Clipboard; see “Cut, Copy, Paste, and Clear” on page 13-9 
for details. Also, investigate the export formats supported by your instrument software. 
Devising a smooth path from data generation to data congregation takes time, but once 
you learn some “tricks”, you can speed up this process significantly.

Some questions to consider during the initial organizational effort include:
• Are the data from an instrument? If so, are they from more than one instrument or 

type? What is the precision of the instrument(s)?

• Are there questionnaire or hand-recorded data?

• Are data from each sample in single files?

• Are class and/or dependent variable(s) data stored in separate files or will they be 
hand-entered?

Data can be hand-entered into the Pirouette spreadsheet; see “Changing Data Values” on 
page 13-8. They can be imported from Excel files or from existing ASCII files; see 
“Opening and Merging Existing Data Files” on page 14-3. Other formats are also al-
lowed. If class or dependent variable values are stored separately, use the File Merge 
function discussed in “Opening and Merging Existing Data Files” on page 14-3, after in-
suring that the samples in both data sets are the same and in the same order. Once all data 
have been assembled, any class or dependent variables must be designated as such; see 
“Changing Variable Types” on page 13-10. Why this is necessary is explained in the next 
section.

When combining data from one or more sources for multiple samples, keep in mind that 
Pirouette defines a sample (or object or case) as a line (or row) of information. A row can 
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4 Preparing for Analysis: Checking Data Validity
contain a sample name, class variables (one or more category designations) and mea-
sured variables. Measured variables can be multichannel instrument responses (e.g., ab-
sorbances), separation results (e.g., peak heights or areas at specific or relative retention 
times), multiple specific assays from single channel instruments or physical/chemical/bi-
ological tests. Non-instrumental data may be included (e.g., data from a sensory or expert 
panel). Measured variables can be either dependent (y) or independent (x).

TRAINING SET STRUCTURE
The data structure required by modeling algorithms (most commonly PCA, KNN, SIM-
CA, CLS, PCR and PLS) merits some explanation. Building either a classification or re-
gression model requires a training set, also called an experience set. A training set 
contains more than the independent variables on which a model is based.

If a classification model is to be built, the extra information is a class variable, i.e., the a 
priori category assignment for each sample. For example, if the goal is to categorize sam-
ples as either fresh or stale based on NIR spectra, then each sample in the training set 
must have already been determined to be fresh or stale by some means unrelated to NIR 
spectrometry, and this information must be included along with the spectra. Thus, run-
ning KNN, SIMCA, or PLS-DA requires a data set containing at least one class variable.

If a regression model is to be built, the extra information is a dependent variable, i.e., the 
parameter to be predicted for each sample. For example, if the goal is to predict the per-
centage of protein in wheat from NIR spectra, then each sample in the training set must 
have already been analyzed for protein, perhaps by a wet chemical method, and this in-
formation must be included along with the spectra. Thus, running either PCR or PLS re-
quires a data set containing at least one dependent variable.

PLS-DA is a special case in which the algorithm uses the information in a class variable 
to form multiple dependent variables.

Checking Data Validity

After the data have been assembled in one file, viewing it in the Pirouette spreadsheet is 
next. Quickly scroll through the samples and variables to find missing values (signified 
by asterisks), especially if you have merged data from several sources. If data sets with 
different dimensionality are merged, Pirouette fills empty cells in incomplete rows or 
columns with asterisks to maintain a rectangular data area.

To deal with missing values you can:
• Supply values, either row-wise or column-wise

• Exclude rows or columns containing missing values

• Delete rows or columns containing missing values

If only a few values are missing, you may apply one of Pirouette’s fill options; see “Fill-
ing Missing Values” on page 13-13. Filling is recommended only when relatively few 
values are missing.

If many values are missing, it is more appropriate to exclude the affected samples and/or 
variables; see “Creating Subsets from Tables” on page 13-20. In this way, they have no 
effect, except through the influence of removing an important variable. Later, you may 
be able to collect the data that were lacking and repeat the Pirouette analyses with the 
variable included.
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4 Preparing for Analysis: Visualizing the Data
Sometimes you may decide that the missing values should be permanently removed from 
the data set, particularly if you anticipate never recovering the sample or repeating a mea-
surement. In this situation, a logical choice is to delete sample(s) and /or variable(s) with 
missing entries before proceeding; see “Insert and Delete” on page 13-9.

If you decide to exclude a variable because of missing values, you can proceed with most 
analyses without problems. However, you will not be able to apply some transforms. 
Some Pirouette transforms (discussed in “Transforms” on page 4-10) involve all vari-
ables. For example, taking derivatives and performing smooths are prohibited when 
missing values are present. In these cases you must either delete variables with missing 
values or fill them.

Visualizing the Data

Plots of the raw data convey its structure. The plot views shown below can point out im-
portant data features. They provide a taste of the graphical approach embraced by Pirou-
ette. Remember, a picture is worth a thousand words/numbers. A table of numbers is 
more easily comprehended graphically. As you become a more experienced Pirouette us-
er, you will discover your own ways to visualize data and occasionally find a view offer-
ing a new and instructive perspective. See “Pirouette Graph Types” on page 12-4, to 
become familiar with Pirouette’s plot types.

LINE PLOTS
A line plot of a sample may indicate anomalous values that you might overlook in scan-
ning the numbers in the spreadsheet. Overlaying line plots of all samples can give a quick 
indication of specious samples—samples which may be outliers. The bulk of the data in 
the following figure are fairly homogeneous but one sample is obviously distinct.

Figure 4.1
Line plot of data with
one unusual sample

Line plots of variables can also reveal obvious anomalies. In the next figure, the outlier 
sample seen in Figure 4.1, which is the fifth sample, stands out when the data are present-
ed in a line plot of a variable.
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4 Preparing for Analysis: Visualizing the Data
Figure 4.2
Line plot of a variable

with one unusual
sample

A line plot of a single variable can also reveal trends in the data. For example, a steadily 
decreasing value for a variable across the sequential order of samples may be expected 
or it may indicate an undesirable drift in the measurement. Such a decrease occurs in the 
figure below. You must decide if this behavior is acceptable.

Figure 4.3
Line plot of a variable

with a trend

Similarly, overlaid line plots of variables might reveal other trends or anomalies. For this 
view to be of value, the plotted variables must span the same relative range of response. 
Otherwise, some plotted information is buried close to the baseline and difficult to assess. 
The next figure is an example of an overlaid line plot of several variables, showing the 
different response levels of the variables, as well as different relative responses among 
subgroups of samples in the set.
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4 Preparing for Analysis: Visualizing the Data
Figure 4.4
Line plot of several

variables

SCATTER PLOTS
Variable scatter plots, either 2D or 3D, may reveal correlations between variables. Un-
usual samples stand out in a scatter plot. For example, in the following figure, an outlier 
is clearly visible.

Figure 4.5
Scatter plot with

obvious outlier

A 3D scatter plot has the added advantage of showing three variables simultaneously. 
Couple that with the ability to rotate the points in 3 dimensions and this presentation be-
comes very forceful.

A multiplot is a collection of 2D scatter plots. Pirouette’s multiplots facilitate the often 
tedious task of generating and inspecting many 2D bivariable combinations. The follow-
ing multiplot indicates that some variables are highly correlated while others are nearly 
invariant.
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4 Preparing for Analysis: Visualizing the Data
Figure 4.6
Multiplot with

correlated and
uncorrected

variables

With luck, you may uncover a set of variables which clearly distinguish sample clusters. 
If your goal is classification, this visual analysis may suffice. The multiplot below con-
tains subplots in which clusters are obvious (e.g.,K vs Ba).

Figure 4.7
Multiplot with

distinguishable
clusters in several

subplots

Of course, examining multiplots is feasible only when the number of variables is rela-
tively small, say, less than 20. Otherwise, the number of subplots would make it imprac-
tical to show in a single multiplot because there would be too little plot area in each 
individual subplot.

Although there are many ways to visualize the structure in a data set, all are ultimately 
limited by our ability to process only two or three dimensions of information at one time. 
Because multivariate data sets have by definition high dimensionality, computational ap-
proaches have been developed to overcome this limit on our ability to interpret and char-
acterize complex data sets. Often, the result of such computations is to isolate the relevant 
information in only a few derived variables. These techniques are the subject of the re-
maining chapters in this section of the manual.
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4 Preparing for Analysis: Transforms
Transforms

For some data types, it helps to transform the independent variables (the x block) prior 
to analysis. This is especially true when the independent variables consist of like mea-
surements which vary in time (as in a chromatogram or a cyclic voltammogram) or wave-
length (as in a spectrum). For example, there may be noise spikes in a signal stream. 
Smoothing can lessen the effects of these random variations. Alternatively, a spectrum 
may contain subtle peak shoulders enhanced by computing a derivative.

VIEWING TRANSFORMED DATA
You should always have a definite reason to apply a transform and always view its ef-
fects on the data. To accomplish this:
• Go to Process/Run

• Select XFORM in the list of Algorithms

• Move the desired transforms from the Available list into the Selected box, in the de-
sired sequence

• Click on an exclusion set to which the transforms will be applied

• Click on Add

• Continue to configure transform sequences and exclusion sets

• Click on Run

Running the XFORM algorithm tells Pirouette to apply the selected transforms to the con-
figured exclusion set; drag this computed object to the work area to display a window 
containing a plot of the transformed data.

When you are convinced that the transform settings have a reasonable and useful effect 
and wish to apply them prior to the execution of an exploratory, classification or regres-
sion algorithm, confirm that they are in the Selected box when you add the algorithm. 
When algorithms are run, any selected transforms are applied before preprocessing; see 
“Preprocessing” on page 4-26 for a discussion of this topic. As row-oriented operations, 
transforms are applied to each included row (thus, samples) separately. Consult the indi-
vidual discussions below for the details concerning specific transforms.

CONFIGURING TRANSFORMS
In Pirouette, the available transforms are:
• 1st and 2nd Derivative

• Align

• Baseline Correction

• Divide by functions

• Log 10

• Multiply

• Normalize

• Multiplicative Scatter Correction

• Smooth
4–10



4 Preparing for Analysis: Transforms
• Standard Normal Variate

• Subtract

Transforms are specified by moving them from the Available list box to the Selected list 
box in the Run Configure dialog; see the figure below. Several offer customizable param-
eters which are displayed when the transform name is clicked with the mouse.

Figure 4.8
Transforms portion

of Run Configure
dialog box

Note that you can apply a sequence of transforms. For example, in the figure shown be-
low, three are specified. First, the value of the variable #1 is subtracted from each sample, 
then the first derivative is taken, then the result is smoothed. No transform, however, can 
be applied more than once.

Figure 4.9
Applying three

transforms
sequentially

Using a Mask
Several transforms can employ a mask to further customize their action. A mask is a row 
in the data set containing only zeroes and ones. Variables containing values set to one are 
used by the transform, and those set to zero are not. How those variables are to be used 
depends on the transform.
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4 Preparing for Analysis: Transforms
To create a mask, insert a new row (see “Insert and Delete” on page 13-9) in the spread-
sheet of the data. An inserted row is automatically excluded; since it is not real data, just 
an aid for Pirouette for computing transforms, it should stay excluded. Initially, you may 
want to place ones in the appropriate cell ranges (see “Filling Missing Values” on 
page 13-13), then fill the row with zeroes.

Derivatives and Smooths
The 1st and 2nd derivative and smoothing transforms are based on a Savitzky-Golay 
polynomial filter1. This method applies a convolution to independent variables in a win-
dow containing a center data point and n points on either side. A weighted second-order 
polynomial is fit to these 2n + 1 points and the center point is replaced by the fitted value. 
The three transforms differ in the weighting coefficients. The filters implemented in Pir-
ouette include the modification suggested by Gorry2 to handle the first and last n points.

Figure 4.10
Specifying number

of window points

You choose the number of window points in a smooth or derivative via the associated 
drop down list box (see above). The number of window points must be less than the num-
ber of independent variables; otherwise the run aborts. The next figure shows the effect 
of a nine point smooth.

Figure 4.11
(a) Before smooth (b)

After smooth a b
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4 Preparing for Analysis: Transforms
The effects of the nine point derivative are shown below. Note that each successive de-
rivative reduces the signal magnitude, as well as the signal to noise, a consideration if 
your raw data signals are not strong.

Figure 4.12
Raw data contrasted

with 1st and 2nd
derivatives.

Log 10
This transform computes the base 10 logarithm of the absolute value of each independent 
variable. It emphasizes small data values relative to larger ones. An example is shown 
below. When the log of zero is taken, the result is -6.92369, the log of the smallest posi-
tive number which can be represented in single precision.

Figure 4.13
(a) Before log

(b) After log

Note: Because transmittance (optical spectroscopy) does not vary linearly with concentration, 
transmittance values should be converted to absorbance before regression models are 
developed to predict concentration. Although Pirouette does not provide a direct Trans-
mittance-Absorbance conversion, the functional equivalent is a Log 10 transform fol-
lowed by Multiply by -1.
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4 Preparing for Analysis: Transforms
Multiply
The basic Multiply transform is straightforward: supply a constant by which to multiply 
all values. See the note above for a common usage in spectroscopy. Multiply can also be 
useful when all data values are extremely large or small, for example, when a second de-
rivative decreases the magnitude of the data significantly or for data from some NMR in-
struments whose values are in the millions.

It is also possible to multiply every value in a row by a corresponding value in a specified 
vector. This might be useful when you want to correct the magnitudes of measures that 
are considerably different among the variables. 

Figure 4.14
Multiply by Vector

This complements the Divide by Vector transform, discussed below (“Divide by Sample 
Vector” on page 4-17).

Normalize/Divide By
Many definitions are given for normalization. All share the idea of dividing each data 
value by a normalization factor. The various Divide By options (shown below) provide 
flexibility in computing the normalization factor for the ith sample, fi. Each included 
variable in that sample is then divided by fi.

Figure 4.15
Divide By options

Divide By Sample 1-norm

This is also known as area normalization because the normalization factor is simply the 
area under the sample profile, the sum of the absolute values of all included variables for 
sample i:
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4 Preparing for Analysis: Transforms
 [4.1]

The symbol m* indicates included variables.

Divide By Sample 2-norm

This is also known as vector length normalization since each included variable is divided 
by the length of the sample vector:

[4.2]

Note that this transform is also available as the Normalize option:

Figure 4.16
Normalize scaling

parameter

which includes a scaling parameter applied after the division.

Note: Divide By, 2-norm is equivalent to Normalize to 1. Normalize remains in the list of transforms 
for backward compatibility.

Divide By Sample Max

Dividing by the sample’s maximum value scales data in a manner typical for mass spec-
trometry, in which the most abundant mass fragment is given a value of 100%. Thus, the 
normalization factor is simply:

[4.3]

Divide By Sample Range

When data derive from different instruments, such as chromatography systems from dif-
ferent vendors, not only can the baselines differ, but the actual data units might not be the 
same. An easy way to put these measurements on a comparable scale is to divide by the 
range in values across the sample. This normalization factor is then:

[4.4]

This transform differs slightly from the others in that the sample’s minimum is subtracted 
from each value before dividing by the normalization factor:

fi xij

j

m∗

=

fi xij
2

j

m∗


 
 
 
 

1 2/

=

fi max xi( )=

fi max xi( ) min xi( )–=
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4 Preparing for Analysis: Transforms
[4.5]

In general, the Divide By Sample options just described differ from other transforms in 
that they depend on which variables are used in computing the normalization factor, i.e., 
normalization with all variables included has a different effect than normalization with 
several variables excluded. This dependence is most notable if the excluded variables are 
relatively large in magnitude. Normalizing is most appropriate when response depends 
on sample size—for example, in chromatography with mass-sensitive detection.

Using a Mask

Sometimes it is desirable to compute the normalization factor using one set of variables 
and have it applied to a different set. The mask row permits this scenario. Create a mask 
(see “Using a Mask” on page 4-11) and set to one those variables which are to determine 
the normalization factor. The variables with values = 1 can be excluded or included. 
Then, in the Transforms dialog box, indicate the mask row number. The appropriate nor-
malization factor is then computed for each sample from variables having ones in the 
mask. All included variables in that sample are then divided by the normalization factor.

Divide by Value at Variable

In absorption spectrometry, it may be desirable to normalize to the value at a particular 
variable n, so that the normalization factor is:

[4.6]

Some examples of the results of the Divide By transforms are given below.

Figure 4.17
(a) Raw data;

after divide by the
(b) 2-norm;
(c) 1-norm;

(d) max norm

Note: Because a normalized vector has a length of 1, we have effectively “removed” one inde-
pendent value from the sample. If we know m - 1 (i.e., all but one) of the values, we can 
compute the remaining value from the vector length. This phenomenon is known as clo-
sure. Closed data can behave erratically under certain conditions, especially if there are 
very large and very small values and if there are relatively few variables. Thus, normal-
izing data containing fewer than ~10 variables is not advised 3.

x norm( )ij
xij min xi( )–

fi
-------------------------------=
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4 Preparing for Analysis: Transforms
Divide by Sample Vector

When data are merged, as variables, from sources in which the measurement units are 
considerably different--such as from spectroscopy and chromatography--the variables 
from the source with the smaller unit may have values that will swamp those from the 
other source. Scaling by variance would not properly correct this disparity. It is possible, 
however, to insert a scale factor with this Divide by transform, a form of block scaling.

Create an excluded row to be used as a vector of divisors and insert values into the ap-
propriate variables to control the normalization factor for the variables. Then, in the 
Transforms dialog box, indicate the row number.

Figure 4.18
Divide by Sample

Vector option

The appropriate normalization factor for each variable is drawn from the corresponding 
value in the indicated row. An example of this situation is shown below.

Figure 4.19
(a) Raw data, and (b)

after Divide by
sample vector

Divide by Subset mean

For some data sources, the variables represent measures with different units. Biomarker 
data from geochemical measures provide an example. This can have the inadvertent ef-
fect of enhancing the importance of those variables whose units make numbers seem 
large when, in fact, all variables should be given the same importance. If possible, it is a 
good idea to scale the all variables to have approximately the same numeric range. Au-
toscaling is one way to accomplish this but has the side effect of emphasizing noisy vari-
ables and produces positive and negative values. 

An alternative to autoscaling is to divide each variable by a constant such that all vari-
ables will be approximately on the same scale. This can be done before entering the data 
into Pirouette but can be done as well by creating a sort of dummy variable that contains 
the scale factors, then telling Pirouette to “Divide by Sample Vector”.

Another more automated way to do this is to use the Divide by Subset mean option. In 
this case, the mean of each variable will be used as a divisor for that variable, where the 
mean will be taken for all rows that are included in the subset. An example of using the 
Subset mean for scaling variables is shown below. Note the additional benefit to this ap-
proach: the transformed data show all positive values.
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4 Preparing for Analysis: Transforms
Figure 4.20 Raw
data and after Divide

by Subset mean

Subtract
A limited form of background removal can be accomplished with the Subtract transform. 
In Pirouette, Subtract functions in two ways: by subtracting a user-specified constant 
from all independent variables or by subtracting the value at one variable from the re-
maining variables for each sample. In the first case, you can choose a positive or negative 
value. An illustration of the effect of variable subtraction is given below.

Figure 4.21
Subtract variable #1

(a) before (b) after

Baseline Correction
The Baseline Correction transform corrects offsets by subtracting a profile, rather than a 
single point. This profile can be a row in the data table or can be derived from a curve fit. 
These choices are shown below.
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4 Preparing for Analysis: Transforms
Figure 4.22
Baseline correction

options

Curve Fitting a Profile

Finding a baseline for each sample requires knowledge about which variables make up 
the baseline and the degree of polynomial to be fit. Linear, quadratic and cubic fits em-
ploy a first, second and third degree polynomial, respectively. The most straightforward 
way to specify baseline variables is via a mask containing ones for every variable con-
sidered “in the baseline”. See “Using a Mask” on page 4-11.

Avoiding the mask creation process and supplying only the degree of fit invokes an iter-
ative method of finding baseline variables. First, all included variables are used to com-
pute a trial baseline of the specified degree. Only variables with points lying on or below 
the trial baseline are retained as baseline variables and another trial is computed. As this 
process repeats, fewer variables remain in the baseline. When only 1% of all included 
variables are left in the baseline or when the number of baseline variables does not de-
crease, the process stops and the actual baseline is computed on the retained variables. 
Thus, which and how many variables are determined to be “in the baseline” varies from 
sample to sample.
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4 Preparing for Analysis: Transforms
Figure 4.23
Baseline correction:

(a) Raw data;
(b) Linear fit;

(c) Quadratic fit;
(d) Cubic fit

Subtract sample

To subtract the same row in the data table from every sample, supply the row number as 
shown in the figure below. The indicated row must be excluded from the subset being 
transformed, otherwise the run will abort.
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4 Preparing for Analysis: Transforms
Figure 4.24
Baseline correction

(a) Raw data, (b)
Subtract selected

sample

MSC
MSC (Multiplicative Scatter Correction) is a standard approach to compensating for scat-
tering by solids in NIR spectrometry. Each sample spectrum is regressed linearly against 
an ideal spectrum to yield a slope and intercept. The sample spectrum is then “corrected” 
at each wavelength by first subtracting the intercept, then dividing by the slope. The ideal 
spectrum is most often simply the mean of included samples. Defining the mean spec-
trum as the ideal is sometimes cited as a disadvantage of MSC. However, there is no gen-
eral agreement on what might more properly constitute the ideal spectrum. Be aware that 
MSC violates the general rule in Pirouette that transforms affect samples independently. 
Because the mean spectrum is calculated from the included samples, the correction of a 
sample varies with the number and spectra of included samples.

Figure 4.25
Examples of (a) MSC,

and (b) SNV
transforms

When MSC is run on a subset with excluded variables, the regression step is performed 
piece wise, that is, for each region of included variables. Also, when a mask is specified 
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4 Preparing for Analysis: Transforms
in MSC, only those variables with ones in the mask are used in the regression step. Some 
chemometricians have suggested that only wavelengths with no chemical information be 
used to find correction factors in MSC. This can be achieved applying the two steps just 
described.

SNV
SNV (Standard Normal Variate) is another approach to compensating for scattering by 
solids in NIR spectrometry. It can be described as row-autoscaling. The mean and stan-
dard deviation of a sample are first computed based on included variables; the value for 
each included variable is corrected by first subtracting the mean, then dividing by the 
standard deviation. The result is often similar to MSC; see Figure 4.25. One advantage 
of SNV over MSC is that SNV does not depend on the specific data set being processed; 
each sample is corrected independently (MSC does its correction relative to the subset 
mean).

Align
Raw chromatographic data often suffer from a lack of retention time reproducibility 
across samples, which can severely hinder multivariate analysis. Chromatographic soft-
ware may compensate for these shifts with internal standards. The retention time of ana-
lytical peaks is compared to that of an internal standard (or marker peak), and a correction 
factor derived from a calibration run adjusts the analytical peak’s elution time. Typically 
this approach is applied to peak data only. The Align transform allows a similar correc-
tion for the entire profile.

The likelihood of a high quality alignment increases when:
• The elution time difference between an analytical peak and marker peak is small

• The marker compound and analytes interact with the stationary and mobile phase in 
a similar fashion

To satisfy these criteria, long separations mandate multiple markers. Adjusting an ana-
lytical peak’s profile with a single marker is risky. It requires either an interpolation be-
tween the marker time and zero (or a surrogate zero based on the separation system’s 
‘hold up’ time) for peaks eluting before the marker or an extrapolation for peaks eluting 
after.

The familiar Kovats retention index4 employs a homologous series of markers—for ex-
ample, the n-alkanes—to adjust analytical peak elution times from bracketing markers. 
Linear interpolation is adequate for (linear) gradient liquid chromatography and most 
electrophoretic methods. A retention index system can be based on any set of marker 
compounds. In the analysis of petroleum hydrocarbons, for example, the linear polynu-
clear aromatic hydrocarbons—benzene, naphthalene, anthracene, tetracene, pentacene—
are reasonable markers. In the analysis of vegetable oils, methyl esters of the straight 
chain fatty acids of various lengths are often used as markers5.

Pirouette’s alignment implementation requires that suitable marker retention times are 
stored in the Y-block; they form the basis for the adjustments of the whole chromato-
grams comprising the X block. The markers must, of course, be present in all samples, 
including any calibration or reference samples. Their values are assumed to have units of 
scan variable number, not actual retention time.

Several file formats read by Pirouette understand the idea of a Y variable. Input of data 
in these formats avoids having to enter manually the marker peak values. For example, 
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one flavor of the Pirouette AIA file read extracts named peak information and assigns 
their scan times to the Y block (see page 14-10). 

Note: To take advantage of this special AIA file read, the user should configure the chromato-
graphic method to report only named peaks and to create a calibration file containing 
only peaks that will be used as alignment markers.

Finding Markers Manually

If the marker positions are not available in the file containing the profiles, then the user 
must enter the marker values manually. First, create as many Y variables as markers. 
Next, decide which sample in the data set is the calibration sample, that is, to which sam-
ple will all other samples be aligned. Then, visually scan a line plot of this calibration 
sample to find the variable # closest to the first marker’s retention time, then type this 
value into the first Y column. Continue to find marker variable #’s for the remaining Y 
variables for the calibration sample.

Figure 4.26
Example data with

anchor values set for
a calibration sample

You could continue this process for all samples to be aligned. But, the process can also 
be automated by entering zeroes for non-calibration samples. When a non-calibration 
sample marker is zero, the calibration sample marker value is used as a starting point for 
finding the precise anchor value for the sample. 

If the window size option (see below) is too small, the true peak top will not be found, 
and the alignment results will be in error, manifested by marker peaks in the samples 
which are not in alignment with the calibration sample. Adjust the window size or the 
estimated marker peak top position and rerun the Align transform until all sample marker 
peaks align.

Align Options

Only two options need be set to run the Align transform, and these are shown in the ac-
companying figure.
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Figure 4.27
Align options

The Align To Row # specifies the row in the dataset to which all other profiles are 
aligned, that is, it points at the calibration sample. This row can be included in or exclud-
ed from the subset being aligned.

The Window Size is key to automating exact marker location. Recall that the user initial-
ly specifies a nominal elution value (in terms of X block index) for each marker by in-
serting the index value in the Y block of the spreadsheet. A more precise value is found 
by first searching around the nominal value for a local maximum, then refining that local 
maximum by fitting a parabola to 5 points centered on the point. The Window Size de-
termines the region that will be searched for the local maximum; choose a value on the 
order of an average peak width.

As an example, consider a chromatogram with 500 time units and peaks with widths of 
about 12 time units. A nominal marker value of 427 and a Window Size of 11 means that 
the local maximum would first be found by examining the signal at variables 422-432. If 
the signal maximum occurs at variable 423, the refined maximum would then be deter-
mined by fitting a parabola through the signals at 421-425. 

A Window Size of 0 is a special case and indicates that no refinement of the supplied val-
ues is to be done. Thus, the marker values inserted in the spreadsheet will be used as is 
for the adjustment calculations. This is useful when it is necessary to iterate with the 
Align parameters because you can apply data in the Anchor object from a previous run, 
copying them into the Y-block marker cells.

An example data set, named MYCALIGN.DAT, is supplied so that you can follow these 
steps on a small file. In this data set, two anchors (the chromatographic internal stan-
dards) are present in all of the samples to be aligned as well as in the calibration file (la-
beled as a QC sample). The anchor times are already included in the file; examine a line 
plot of the data to locate these values relative to other peaks, before and after alignment.

Align differs slightly from the other transforms, in that it produces two objects: the 
aligned X block profiles and the updated marker times/positions, which are called An-
chors. The Anchors contain the fitted peak maxima for each marker in each sample. If 
you initially set the sample markers to zero, to use the calibration markers as surrogates, 
you may want to save the computed anchor times for future reference.
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Figure 4.28
An Anchors object

The aligned profiles compose a matrix that is the exact size of the data set (or exclusion 
set) matrix. The line plot display gives a good visual indication of the alignment achieved 
by showing the anchor points as exact overlays. An example of a set of aligned profiles 
is shown below, together with a blown-up region around one of the anchors.

Figure 4.29
Aligned profiles;

(inset) marker peak

Saving Aligned Results

Because the alignment process happens as part of a transform, subsequent analysis, such 
as PCA or HCA, can be performed on automatically aligned data. Nevertheless, you may 
still want to preserve the aligned data in a separate file for later use. To export aligned 
profiles, use the Save Objects command under the File menu. If the data were originally 
exported as AIA files from a chromatography system, you may want to choose the AIA 
Raw Data file type filter (see page 15-5).

Note: Infometrix offers a companion software package, called LineUp, which does not require 
markers. To learn more about this product visit LineUp on the web.
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4 Preparing for Analysis: Preprocessing
Preprocessing

Preprocessing, in contrast to transforms, is a column-oriented operation so preprocessing 
results are specific to a set of samples. Adding a sample to a data set can greatly influence 
the effect of a preprocessing technique. The difference between preprocessing data on a 
variable-basis and transforming data on a sample-basis is important to appreciate. Pre-
processing is necessary because several multivariate algorithms compute results driven 
by variance patterns in the independent variables. Sometimes arbitrary measurement 
scales and/or magnitudes produce misleading results when an inappropriate preprocess-
ing is made. A series of illustrations will make this clear.

MEAN-CENTER
Relationships among samples are more easily visualized by placing the plot origin at the 
center of the data set. Thus, points are often centered about the mean. For example, con-
sider the following data.

Table 4.1
Example raw data of

palm fruits

A mean is computed for each variable via the following formula:

[4.7]

The mean is then subtracted from each data value to produce a mean-centered matrix:

[4.8]

Thus, we can compute the mean-corrected values derived from Table 4.1; these are 
shown in the next table.

Table 4.2
Mean-Centered Data

To illustrate the effect of mean-centering, the data from both tables are plotted as below.

Iodine Index Oleic Acid
Tucumã 76.0 65.67
Dendé 58.0 37.00
Inajá 74.9 48.72
Burití 68.5 72.81
Patauá 75.1 80.20
Pupunha 56.6 53.56

xj
1
n
--- xij

i

n

=

xij mc( ) xij xj–=

Iodine Index Oleic Acid
Tucumã 7.8167 6.0100
Dendé -10.1833 -22.6600
Inajá 6.7167 -10.9400
Burití 0.3167 13.1500
Patauá 6.9167 20.5400
Pupunha -11.5833 -6.1000
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4 Preparing for Analysis: Preprocessing
Figure 4.30
Plots of (a) raw data

(b) mean-centered
data

Mean-centering is recommended for most data types as it merely shifts the origin without 
altering relative inter-sample relationships. However, when performing multivariate re-
gression (see Chapter 7, Regression Methods) on data which vary linearly with concen-
tration, have no baseline, and are not closed, it may be best to avoid the centering step6.

VARIANCE SCALE
When data from two (or more) disparate variables span different magnitude ranges, the 
largest variable dominates any variance computations. Consider, for example, measure-
ments of different properties (e.g., temperature, pH, humidity, etc) where the units create 
arbitrary variable ranges. Thus, a change in pH of one unit (say, from pH 7 to pH 8) could 
be masked by a change in temperature of 10 units (say, from 300 K to 310 K). In such 
situations, the dominant variable’s masking influence can be removed by variance scal-
ing.

On the other hand, spectral measurements usually exhibit significant correlation among 
the variables. In this case, there is no masking since the variation patterns for both large 
and small variables are quite similar. These data are not usually variance scaled.

The table below contains measurements of two variables. In this case, the units are the 
same (% composition) but differences in magnitude and range cause one variable, oleic 
acid, to dominate the total variance of the data set.

Table 4.3
Variables with

Different Magnitudes

The 2D scatter plot in the next figure shows clearly the dominant variable. If both varied 
equally, points would be spread over the plot window. That all of the data points are com-
pressed against one axis implies that linoleic acid varies over a much smaller range than 
oleic acid. If no scaling is applied, variance-based algorithms would “see” Oleic acid as 
the dominant variable.
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% Oleic Acid % Linoleic Acid
Tucumã 65.67 3.65
Dendé 37.00 9.26
Inajá 48.72 15.50
Burití 75.81 4.86
Patauá 80.20 6.70
Pupunha 53.56 6.27
Mucajá 20.00 0.00
4–27



4 Preparing for Analysis: Preprocessing
Figure 4.31
Comparing

variances of oleic
and linoleic acid

One way to address this problem is by dividing all values for a variable by its standard 
deviation. (This approach is called variance scaling although it would be more logical to 
call it standard deviation scaling.) Thus, we first compute the variance for each variable:

[4.9]

Then, each independent variable is divided by the appropriate standard deviation, sj:

[4.10]

The following table contains the result of variance scaling the data in Table 4.3.

Table 4.4
Variance Scaled Data

These data are plotted in the next figure; the points are more equally distributed along 
both axes. Contrast this plot with Figure 4.31.
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sj
2 1

n 1–
------------ xij xj–( )2

i

n

=

xij vs( )
xij
sj
-----=

Oleic Acid Linoleic Acid
Tucumã 3.05628 0.75109
Dendé 1.72198 1.90551
Inajá 2.26743 3.18956
Burití 3.52819 1.00008
Patauá 3.73250 1.37871
Pupunha 2.49268 1.29023
Mucajá 0.93080 0.00000
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Figure 4.32
Variance scaled data

AUTOSCALE
Autoscaling finds use in many fields including statistics. For these applications, autoscal-
ing is simply mean-centering followed by variance scaling:

[4.11]

The next table contains the autoscaled Table 4.3 data. When data has been autoscaled, it 
is sometimes said that variables have been standardized.

Table 4.5
Autoscaled Data

Compare Figure 4.31 and Figure 4.33 to the following figure, which contains autoscaled 
data.
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xij as( )
xij xj–

sj
----------------=

Oleic Acid Linoleic Acid
Tucumã 0.52344 -0.60820
Dendé -0.81080 0.54619
Inajá -0.26540 1.83025
Burití 0.99536 -0.35920
Patauá 1.19967 0.01940
Pupunha -0.04010 -0.06900
Mucajá -1.60200 -1.35930
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Figure 4.33
Autoscaled data

RANGE SCALE
Range scaling is commonly used to prepare data points for graphing, as is the case for 
Pirouette’s 2D and 3D scatter plots. Each axis in such a plot is adjusted so that the data 
fill the plot window. This is expressed mathematically as:

[4.12]

Range scaling constrains the range of values for all variables to fall between 0 and 1, in-
clusively. The result of range scaling the data in Table 4.3 is shown below.

Table 4.6
Range Scaled Data

Because the extreme values of each variable determine the range, this type of scaling is 
sensitive to the presence of outliers. The range scaled data is plotted below.

-1 0 1

Oleic acid

-1

0

1

Li
no

le
ic

 a
ci

d
Tucumã

Dendé

Inajá

Burití

PatauáPupunha

Mucajá

xij rs( )
xij xj min( )–

xj max( ) xj min( )–
---------------------------------------=

Oleic Acid Linoleic Acid
Tucumã 0.75864 0.23548
Dendé 0.28239 0.59742
Inajá 0.47708 1.00000
Burití 0.92708 0.31355
Patauá 1.00000 0.43226
Pupunha 0.55748 0.40452
Mucajá 0.00000 0.00000
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Figure 4.34
Range scaled data

PARETO SCALE
Autoscaling attempts to compensate for different magnitudes in variables but runs the 
risk of amplifying noise variables. A compromise between mean centering and autoscal-
ing is a technique known as Pareto scaling in which the divisor is the square root of the 
standard deviation:

[4.13]

The next table contains the Pareto-scaled Table 4.3 data. 

Table 4.7
Pareto-scaled Data

In the following figure, oleic acid still appears as the dominant variable, however, the 
spread along the linoleic acid axis is almost of the same magnitude. As a result, both vari-
ables will participate in the analysis; neither variable will be overemphasized.
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xij ps( )
xij xj–

sj
----------------=

Oleic Acid Linoleic Acid
Tucumã 2.426360 -1.340794
Dendé -3.758654 1.204058
Inajá -1.230284 4.034695
Burití 4.613874 -0.791905
Patauá 5.560934 0.042771
Pupunha -0.186145 -0.152289
Mucajá -7.426084 -2.996536
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Figure 4.35
Pareto scaled data

SETTING PREPROCESSING OPTIONS
Each Pirouette algorithm has its own set of options of which preprocessing is one. To set 
Preprocessing options, refer to Figure 4.36 and use the following procedure:
• Choose the Process/Run menu item or ribbon button

• Select an Algorithm

• Select the desired Preprocessing

• Select an Exclusion set on which to run the algorithm

• Click on Add to add that Algorithm and Exclusion set configuration

• Click on Run when you have finished adding configurations

Figure 4.36
Setting

preprocessing
options
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4 Preparing for Analysis: Calibration Transfer
When investigating a new data set, you may not know which form of preprocessing is 
most appropriate and should take advantage of the Run Configuration batch capability 
by applying several preprocessing options to a data subset and comparing the results. 
However, there are some rules of thumb:
• For spectroscopic data, mean-center

• For NMR or chromatographic profile data, pareto scale

• For chromatographic peak data, usually autoscale

• For data of discrete, uncorrelated physical measurements, autoscale

PREPROCESSING AND OUTLIERS
Preprocessing increases the influence of outliers. Range scaling is worst with autoscaling 
a close second.This explains the importance of outlier diagnostics in variance-based al-
gorithms.

When no preprocessing is applied, the first loading vector in PCA, PCR, PLS and SIM-
CA represents the mean of the independent variable block (scaled to unit length). Thus, 
mean-centering or autoscaling reduces the complexity of a factor-based model by one 
factor. The following figure illustrates this concept; the first loading (see “Mathematical 
Background” in Chapter 5) has the same shape as the mean of the data.

Figure 4.37
(a) Raw data (b) First

loading with no
preprocessing

Calibration Transfer

Difficulties may arise when a multivariate calibration model is created with independent 
variable data from one instrument and applied to data collected on another instrument. 
Seemingly minor between-instrument differences (e.g., in chromatographic stationary 
phase, mass spectral tuning, or wavelength registration) can reduce model reliability sig-
nificantly. Two courses of action exist: either make a new model with data from the sec-
ond instrument only or apply a computational adjustment to mitigate the instrument 
differences. The second approach, known as calibration transfer, has been treated exten-
sively in the chemometric literature7-8. Pirouette implements a form of calibration trans-
fer related to Procrustes Analysis9. It requires collecting profiles of matching samples on 
both instruments from which an intermediate matrix is calculated. This matrix adjusts 
profiles from the second instrument to look like those collected on the first. Thus, it can 
be thought of as a data preprocessing step which occurs after acquisition of the data but 
before application of the model.
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4 Preparing for Analysis: Calibration Transfer
Ideally, the matching profiles would come from the identical sample run on both instru-
ments, but in reality this may not be practical. Instead it may be necessary to find or cre-
ate new samples of like composition. For regression models, a matching profile is 
defined by identical dependent variable settings; for classification models, the assigned 
category must be identical.

Note: When processing raw chromatographic data, the primary impact on calibration transfer 
is the variation in retention time. In many cases, this time axis instability can be corrected 
using another Infometrix software product, LineUp™. This is discussed more completely 
in the LineUp User Guide.

SUBSET SELECTION
A crucial first step is choosing the so-called transfer or repeat samples, those training set 
samples whose matching profiles will also be acquired on the second instrument. A suc-
cessful calibration transfer requires that the most representative profiles in the training 
set be stored in the model when it is created. Pirouette uses the maximum distance meth-
od of Kennard and Stone10 to find these profiles. Enough transfer samples should be 
stored in the model to adequately represent the population modeled. Pirouette stores data 
for up to 10 samples for a regression model and 10 samples per category for a classifica-
tion model. See “Calibration Transfer” on page 6-29 and “Calibration Transfer” on page 
7-56 for important details about the implementation for regression and classification al-
gorithms, respectively.

Four types of adjustments are possible in Pirouette: additive, multiplicative, direct and 
piecewise. The user specifies the type via the prediction preferences; see “Prediction” on 
page 10-19. The mathematical foundation of each follows.

ADDITIVE AND MULTIPLICATIVE ADJUSTMENT
Often response differences in the training and prediction profiles are due to a predictable 
but unknown offset. This difference can be accounted for by an additive or a multiplica-
tive correction. In the additive correction, the difference between the mean spectrum of 
the training set transfer samples and the mean spectrum of the matching prediction trans-
fer samples is computed. The difference is then added to all prediction spectra before the 
model is applied. Thus, the prediction profiles are simply modified in such a way that the 
means between the training and predictions sets are coincident. Similarly, in the multi-
plicative correction, all prediction spectra are multiplied by the ratio of the two means. If 
the differences in the instrument responses vary with signal or are more complex than a 
simple additive or multiplicative bias, neither approach will be as reliable as the correc-
tions discussed below.

DIRECT AND PIECEWISE ADJUSTMENT
If X1 is the matrix containing the transfer sample profiles from one instrument and X2 
contains the matching profiles from another instrument (or from the first instrument after 
acquisition conditions have changed), then we seek a transformation matrix F such that:

[4.14]

so 

X1 X2F E+=
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4 Preparing for Analysis: Final Remarks
[4.15]

Since X2 is unlikely to be invertible, SVD is used (see “Principal Component Regres-
sion” on page 7-4) to form the inverse:

 and [4.16]

A translational correction b completes the transformation. If  and  are the respec-
tive means of the data subsets, then:

[4.17]

Together, F and b specify the transfer of calibration adjustment. The adjusted prediction 
profile x2a (from the second instrument) is then:

[4.18]

where x2u is the original (unadjusted) prediction profile--the unknown.

This form of adjustment, incorporating a rotation, a stretching and a translation, can ac-
commodate most sources of between-instrument differences. It is often referred to as Di-
rect Standardization (DS). In DS, all variables in X2 are related to each variable in X1 to 
form the transformation matrix F.

It is also possible to relate a small number of variables (i.e., a window) in X2 to a single 
variable in X1. The transform matrix is then composed by incorporating, for each vari-
able in X1, the regression vector from this window-to-variable relationship. This ap-
proach, often referred to as Piecewise Direct Standardization (PDS)7, PDS transfer, 
requires the specification of a window size. Reports in the literature suggest that the win-
dow size be at least as large as the chemical rank of the data in the subset. 

Final Remarks

What remains now is to establish the relationship between the contents of the data file 
discussed in this chapter and the X matrix, the x block on which each algorithm operates. 
This requires introducing some nomenclature and specifying a few niggling details. The 
nomenclature is necessary for the algorithm discussions in the following chapters. For 
many users the details are of no importance. However, we supply them because some 
commercial software packages perform undocumented computations which are only dis-
covered when one attempts to duplicate the results using a different package. When there 
is no universally accepted right way (only a variety of plausible ways) to implement a 
software solution, it is not surprising that different packages take different approaches. 
Our intent is merely to document the choices imbedded in Pirouette and point out where 
these choices might impact the user.

Pirouette assumes that samples are stored as rows in a matrix. So a data file containing 
information about n samples must contain n rows. Pirouette recognizes three kinds of 
variables: x, y, and c (for class). Statisticians refer to x and y variables as independent 
and dependent, respectively. The number of columns in a Pirouette data file is equal to 

F X2
1– X1=

X2 USVT= X2
1– VS 1– UT=

x1 x2

b x1 FTx2–=

x2a FTx2u b+=
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4 Preparing for Analysis: References
the sum of the number of x, y and c variables. Variables are assumed to be independent 
until the user specifies a different type.

Note: Pirouette does not count the row containing variable names and the column containing 
sample names in a data file and differs from traditional spreadsheets in this way.

Some differences between transforms and preprocessing have already been mentioned 
but others are now pertinent. It is possible to create an independent object containing the 
transformed data, while preprocessed data are computed and stored for each algorithm 
run. On the other hand, the preprocessed data are made available after a run as one of the 
computed objects. Transforms operate on x variables only, while preprocessing operates 
on x and y variables. For any given subset of a full data file, transforms are applied first, 
then the transformed data are preprocessed, then an algorithm is run. So it is the trans-
formed and preprocessed x variables which comprise the X matrix used in computations. 
The symbol Xraw designates untransformed and unpreprocessed x variables, the symbol 
Xtrans will designate transformed x variables.

In matrix notation, a sample is a single row vector of data, x, which can be written as:

[4.19]

where elements of the row vector are the m measurements (i.e., the independent vari-
ables) made on the sample. When n samples are available, each vector is stacked with the 
others to form a matrix:

[4.20]

where the element xij is the jth variable measurement on the ith sample, and the elements 
of X may have been transformed and/or preprocessed. Throughout the next chapters, 
quantities which occur repeatedly are assigned the same symbol: n = the number of sam-
ples, m = the number of independent variables.

For most Pirouette computations (that is, in PCA, SIMCA, PLS-DA, PCR, PLS, CLS, 
ALS, LWR, MCR), quantities called X Residuals are computed. They represent the dif-
ference between the independent variables before and after some fitting procedure. An 
obvious question is: which independent variables are meant: Xraw, Xtrans or X? In Pirou-
ette, X residuals correspond to Xtrans. This distinction, which becomes important when 
data are autoscaled, range scaled or variance scaled, is discussed later in the context of 
each algorithm.
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n many technical fields, large quantities of multivariate data are available. The goal 
of exploratory analysis is to provide a quality check on the data, determine its infor-
mation content and pinpoint key measurements. It may also establish the viability of 

the data set with regard to regression or classification model-building.

Exploratory analysis is the computation and graphical display of patterns of association 
in the independent variables (i.e., the x block) of multivariate data sets. Exploratory al-
gorithms reduce large and complex data sets to a suite of best views; these views provide 
insight into both the x block structure and correlations existing among samples and/or in-
dependent variables. Pirouette implements two exploratory techniques: Hierarchical 
Cluster Analysis and Principal Component Analysis.

Hierarchical Cluster Analysis

In Hierarchical Cluster Analysis (HCA), distances between pairs of samples (or vari-
ables) are calculated and compared. When distances between samples are relatively 
small, this implies that the samples are similar, at least with respect to the measurements 
in hand. Dissimilar samples will be separated by relatively large distances. Known in bi-
ological sciences as numerical taxonomy, HCA groups data into clusters having similar 
attributes.

The primary purpose of HCA is to present data in a manner which emphasizes natural 
groupings. In contrast to techniques that group samples into pre-existing categories, 
HCA seeks to define those categories in the first place. The presentation of HCA results 
in the form of a dendrogram facilitates the visual recognition of such categories. HCA 
can focus on samples or variables. Clustering of samples reveals similarities among the 
samples while clustering of variables pinpoints intervariable relationships. Although the 
remarks in this chapter are couched in terms of sample clustering, they apply equally well 
to variable clustering.

Clustering in Pirouette is of an agglomerative type. In such an approach, we start with 
each sample defined as its own cluster, then begin grouping samples together to form 
new clusters until all samples are part of a single cluster. In contrast with the agglomer-

I
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5 Exploratory Analysis: Hierarchical Cluster Analysis
ative methods, divisive methods start with a single cluster composed of all samples, then 
divide clusters until each sample becomes a cluster unto itself. There are, of course, sit-
uations in which one of these approaches will outperform the other (c.f., Hartigan1).

MATHEMATICAL BACKGROUND
This section introduces the mathematical foundations of the HCA algorithm and defines 
several important terms.

Distance Measures
Multivariate distance is computed on the independent variable block, which is the trans-
formed and preprocessed matrix X. The multivariate distance dab between two sample 
vectors, a and b, is determined by computing differences at each of the m variables:

[5.1]

where M is the order of the distance. The distance dab is sometimes called a Minkowski 
distance.

The City Block or Manhattan Distance, where M = 1, finds use mostly with categorical 
data types:

[5.2]

The most common metric in multivariate analysis, and the one featured in Pirouette, is 
Euclidean distance, where M = 2:

[5.3]

Other distances, where M > 2, are less commonly encountered.

Similarity
Because inter-sample distances vary with the type and number of measurements, it is 
customary to transform them onto a somewhat more standard scale of similarity:

[5.4]

where dmax is the largest distance in the data set. On this scale, a value of 1 is assigned 
to identical samples and a value of 0 to the most dissimilar samples.

Linkage Method Definitions
After distances between all pairs of samples have been computed, the two most similar 
samples are linked. Once a cluster is linked to another cluster, they form a single new 
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=
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=
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dab
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-----------–=
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5 Exploratory Analysis: Hierarchical Cluster Analysis
cluster. After distances between this new cluster and all other existing clusters are deter-
mined, the smallest inter–cluster distance is again sought and another linkage formed. 
This process continues until all samples/clusters are linked.

Pirouette’s several approaches to establishing links between samples/clusters are defined 
below and discussed in detail in “Linkage Methods Illustrated” on page 5-5. The distance 
between a newly formed cluster A—B and a previously existing cluster C is calculated 
via one of the formulas below where ni is the number of samples in cluster i.

Single Link

[5.5]

Complete Link

[5.6]

Centroid Link

[5.7]

Incremental Link

[5.8]

Median Link

[5.9]

Group Average Link

[5.10]

Flexible Link

[5.11]

HCA Options
Some data sources are able to generate a square matrix of similarities or distances, obvi-
ating the need for Pirouette to perform that portion of the calculations. To tell Pirouette 
to skip past the preliminary distance calculations, choose “Euclidean (no init)” for the 
Distance Metric. The algorithm will then immediately proceed to the designated linkage 
step as described above.
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5 Exploratory Analysis: Hierarchical Cluster Analysis
HCA OBJECTS
Dealing with distances or similarity values as numbers in a table is a daunting task. 
Graphical representation of clustering results is critical to effective HCA interpretation. 
Pirouette employs a graph form called a dendrogram to depict the similarity of samples 
or variables. It is a tree–shaped map constructed from the table of distances. Branch 
lengths are proportional to the distances between linked clusters. The shape of the den-
drogram (i.e., the connectivity of the various branches) is a function of the linkage meth-
od. A dendrogram with 75 samples is shown below.

Figure 5.1
Dendrogram with
four clusters at a

similarity value of 0.5

The terminus of the branches on the far left of the dendrogram, called leaves, represent 
single samples. The length of the branches linking two clusters is related to their similar-
ity. The longer the branch, the less the similarity; the shorter the branch, the greater the 
similarity and, therefore, the smaller the intercluster distance. Similarity is plotted along 
the top of the graphic with 1.0 corresponding to an exact duplicate and 0.0 indicating 
maximum distance and dissimilarity. The dotted vertical line slices through the dendro-
gram in Figure 5.1 at a similarity value of approximately 0.65, where four clusters can be 
distinguished. The lengths of these four branches are long compared to the branches con-
necting clusters to the left. If noise were added to the data, the leaf lengths would grow 
and the branch lengths shorten. In random data, leaves are often as long as or longer than 
most of the branches.

Note: Even random numbers produce clusters. To familiarize yourself with the look of a den-
drogram constructed from random data, open the file shipped with Pirouette called RAN-
DOM.XLS. The result of HCA on this data set is shown below.

Branches

Leaves

Clusters

{
{
{
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5 Exploratory Analysis: Hierarchical Cluster Analysis
Figure 5.2
Dendrogram of

RANDOM (25
samples and 50

variables, no
transforms or

preprocessing,
single link)

LINKAGE METHODS ILLUSTRATED
Whenever HCA is run, an approach to deciding how samples are grouped must be cho-
sen. There are three general types of linkage methods: nearest neighbor, farthest neighbor 
and centroidal.

The simplest is nearest neighbor linking, which is based strictly on the distance from any 
one sample (alone or in a cluster) to its nearest neighbor. The sample is assigned to the 
cluster containing that nearest neighbor. This concept is depicted below; the unknown 
(big circle) is closer to cluster B’s closest member than to cluster A’s closest member.

Figure 5.3
Nearest neighbor

linking

The farthest neighbor method assigns a sample to the cluster whose farthest neighbor is 
closest to that sample. This concept is depicted in the next figure where the unknown is 
closer to the farthest member of cluster A than to the farthest member of cluster B.

Figure 5.4
Farthest neighbor

linking

0.00.20.40.60.81.0
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5 Exploratory Analysis: Hierarchical Cluster Analysis
In contrast to nearest and farthest neighbor linking, centroidal linking assigns a sample 
to the cluster whose center is nearest. The basic concept is depicted in below where the 
unknown is closer to the center of cluster A than to the center of cluster B.

Figure 5.5
Centroidal linking

The remainder of this discussion contrasts Pirouette’s various linkage methods using data 
from a file called SEVEN.DAT. A scatter plot of SEVEN, which contains seven samples 
and two variables, is shown below.

Figure 5.6
Scatter plot of

samples in SEVEN

The intersample distances for these data are shown in the following table.

Table 5.1
Distances between
samples in SEVEN

Nearest Neighbor Linkage
Pirouette calls its nearest neighbor linking method Single Link. The following graphic 
illustrates how Single Link linking is applied to the SEVEN data.
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Sample # 1 2 3 4 5 6 7
1 0 8.0 1.4 4.0 10.0 10.0 8.5
2 0 7.1 8.9 6.0 8.2 9.4
3 0 3.2 8.6 8.6 7.3
4 0 8.2 7.2 5.0
5 0 2.8 5.4
6 0 3.0
7 0
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5 Exploratory Analysis: Hierarchical Cluster Analysis
Figure 5.7
Succession of

linkages with Single
Link

Because samples 1 and 3 have the smallest intersample distance, as shown in Table 5.1, 
they are joined first. The second link is between samples 5 and 6. This sequence is de-
picted in Figure 5.7a. Linking of the samples proceeds from top left to top right, bottom 
left to bottom right.

Figure 5.8 shows this same set of linkages in the dendrogram view. Bigger clusters form 
as samples are successively linked. Because samples 1 and 3 are most similar, they have 
the shortest branches. This group of two is next connected to sample 4. Samples 5, 6 and 
7 join in a similar fashion. The two clusters of three samples are then connected. Sample 
2 has the longest branch because, being most dissimilar, it is linked last when Single Link 
is applied.

Figure 5.8
Single Link

dendrogram of
SEVEN data

Farthest Neighbor Linkage
Pirouette’s farthest neighbor linking method is called Complete Link. Figure 5.9 illus-
trates Complete Link clustering applied to the SEVEN data. With Complete Link, sample 
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5 Exploratory Analysis: Hierarchical Cluster Analysis
2 is first grouped with the 1-3-4 cluster. However, with Single Link, sample 2 did not link 
with any cluster until the last step.

Figure 5.9
Succession of
linkages with

Complete Link

The dendrogram below shows that sample 2 is more similar to cluster 1-3-4 than it is to 
cluster 5-6-7 when Complete Link is applied.

Figure 5.10
Complete Link
dendrogram of

SEVEN data

Centroidal Linkage
Five different centroidal linkage methods are implemented in Pirouette. All attempt to 
find a central region of a cluster from which to construct distances; they differ in the way 
that the cluster center is computed.
• Centroid Link uses the average position in a cluster

• Median Link finds the median point in a cluster

• Flexible Link is a weighted Median Link
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5 Exploratory Analysis: Hierarchical Cluster Analysis
• Group Average Link is a Centroid Link variant minimizing dendrogram crossovers 
(see below for details)

• Incremental Link employs a sum of squares approach in calculating intercluster dis-
tances

The next graphic illustrates Centroid Link as applied to the SEVEN data.

Figure 5.11
Succession of
linkages with
Centroid Link

Notice that Centroid Link initially groups the samples into the same clusters as Single 
Link but depicts sample 2 as being more similar to the 5-6-7 cluster than was true for Sin-
gle Link (i.e., it links sample 2 to the 5-6-7 cluster before linking cluster 1-3-4). Centroid 
Link occasionally inverts a node as shown in Figure 5.12; the inversion is referred to as 
a crossover. Thus, although sample 2 links to the 5-6-7 group, that intercluster distance 
is longer than the distance between cluster 1-3-4 and cluster 2-5-6-7. Trace out the link-
ing route in Figure 5.11 to confirm the structure of the dendrogram shown below.

Figure 5.12
Centroid Link

dendrogram of
SEVEN data with a

crossover
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5 Exploratory Analysis: Hierarchical Cluster Analysis
Figure 5.13 shows the results of the other centroidal methods applied to the SEVEN data. 
Median Link gives the same dendrogram structure as Single Link. Incremental Link, 
Group Average Link, and Flexible Link resemble Centroidal Link but do not suffer from 
crossover.

Figure 5.13
Dendrograms of

SEVEN data with
Incremental,

Median, Group
Average, and

Flexible Links

CHOOSING A LINKAGE METHOD
Choosing a linkage method is both an art and a science. If clusters are distinct, dendro-
gram shape is hardly affected by the choice. For example, the ARCH dendrogram in the 
next figure has such tight clusters that comparable results would be expected from any 
linkage method.
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5 Exploratory Analysis: Hierarchical Cluster Analysis
Figure 5.14
Distinct clusters in

the ARCH data

However, small clusters can produce misleading dendrograms if either a farthest neigh-
bor (i.e., Complete Link) or a centroidal method is applied. In these cases Single Link is 
usually the better choice. As shown in the following figure, OCTANE20 data forms three 
groups, two having only four samples each.
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5 Exploratory Analysis: Hierarchical Cluster Analysis
Figure 5.15
Small clusters in the

OCTANE20 data

Incremental Link works better than other methods in instances where two groups of sam-
ples differ only slightly, as shown next in the ALCOHOL dendrogram.

Figure 5.16
Poorly separated

clusters in the
ALCOHOL data
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5 Exploratory Analysis: Principal Component Analysis
The appropriateness of a linkage method depends on not only the particulars of the data 
set but also the purpose of the analysis. If you intend to create a KNN classification mod-
el, consider Single Link, which yields a view consistent with KNN results. It is good 
practice to try both Single Link and Complete Link initially. If they show clusters com-
posed of roughly the same samples, go no further. Where cluster memberships differ dra-
matically, centroidal methods should be investigated to see if they favor Single Link or 
Complete Link results. In cases where centroidal methods give noticeably different clus-
ter assignments from both Single Link and Complete Link, more extensive comparisons 
(e.g., with PCA scores plots discussed in the next section) are warranted.

Principal Component Analysis

Principal Component Analysis (PCA) is a powerful visualization tool and thus finds use 
in exploratory analysis. Like HCA, it can represent graphically intersample and intervari-
able relationships. Moreover, it provides a way to reduce the effective dimensionality of 
the data. PCA finds linear combinations of the original independent variables which ac-
count for maximal amounts of variation. The concept of variation is as central to PCA as 
multivariate distance is to HCA and requires some elaboration.

GENERAL CONCEPTS

Variance vs. Variability
For any vector x containing n elements, the variation over the vector might be generally 
defined as simply the sum of squares:

[5.12]

This should be contrasted with the statistical variance, s2, which is defined as:

[5.13]

The standard deviation, s, the square root of the variance, is perhaps a more familiar mea-
sure of spread in a series of values. The variation/variance distinction is moot whenever 
preprocessing options that subtract the mean of each variable are used; the two quantities 
differ only by a factor of n-1. Otherwise, you should be aware of the variation/variance 
distinction, particularly when comparing Pirouette results with other commercial statis-
tical software packages. In the discussion which follows, the term variance is often em-
ployed to describe the quantity computed in equation 5.12. This conflation of variation 
and variance is reasonable to non-statisticians given the prevalence of mean-centering. 
For a discussion of the various preprocessing options in Pirouette, see “Preprocessing” 
on page 4-26.

In the same way that HCA is built on the assumption that small multivariate distance im-
plies similarity, PCA is built on the assumption that variation implies information. Vari-
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5 Exploratory Analysis: Principal Component Analysis
ation might be classified as either relevant or irrelevant. Noise is an example of irrelevant 
variation.

Correlation
Perhaps you are convinced that visualizing large data sets is useful but are wondering 
why it is advantageous to reduce their dimensionality. Multivariate data sets typically 
contain values produced by non-specific sensors, particularly so in chemistry. No single 
probe, for example, responds only to the freshness of fruit or to an individual's intelli-
gence level. To mitigate this lack of specificity, data are collected from many sensors in 
the hope that each captures an aspect of a property or category under investigation. How-
ever, information acquired by sets of sensors is often partially redundant; in statistical 
terms, the measurement variables are correlated. If data on several samples are collected 
from fifty non-specific and partially redundant sensors, the observed variance pattern is 
probably not due to fifty independent phenomena but is instead determined by a much 
smaller number of factors. This number might be viewed as the intrinsic dimensionality 
of the data. PCA provides a way to find those factors.

Terminology
Many terms are used for the linear combinations of original independent variables found 
by PCA: latent variables, abstract factors, principal components, loadings and eigenvec-
tors. The first two colorful terms evoke the psychometric origins of the method. The last 
term is the least ambiguous, referring to a result of a particular matrix decomposition dis-
cussed in most numerical analysis texts2. PCA eigenvectors have several desirable prop-
erties. First, they are mutually orthogonal, which is the same as saying they are 
uncorrelated. Second, eigenvectors can be computed in order of decreasing variance. 
Thus, the first eigenvector accounts for the maximum amount of variance and each suc-
cessive eigenvector accounts for less of the remaining variance in the data. There are as 
many unique eigenvectors as original variables or samples, whichever is smaller.

Note that the term independent variable is somewhat misleading to the non-statistician. 
PCA is a particularly effective multivariate technique when the original so-called inde-
pendent variables are not independent of each other. Finding linear combinations of these 
variables which are uncorrelated (that is, eigenvectors) gets around the difficulties 
caused by intervariable correlations.

Visualization
To visually characterize a data set, we want to construct a small number of 2D or 3D plots 
with important variables on the axes so that key relationships among samples can be 
identified. Unfortunately, given the non-specificity and redundancy mentioned above, 
we cannot know a priori which variables are most important. Moreover, the number of 
possible combinations of axes variables grows dramatically as the number of variables 
increases. However, if the first two or three principal components are placed on the axes 
instead of original variables, the intersample relationships displayed are guaranteed to be 
optimal from the point of view of variance captured. This explains PCA's strength as a 
visualization technique.

Returning to the idea of reducing the dimensionality of a data set, it implies that the data 
contain irrelevant or random variation, some of which can be removed by retaining only 
the principal components which capture relevant variation. After the optimal number of 
principal components has been determined, the data set is not smaller than it was before 
PCA. None of the original variables has been removed. Instead, certain combinations of 
them are disregarded.
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5 Exploratory Analysis: Principal Component Analysis
PCA provides the best possible view of variability in the independent variable block, 
which reveals if there is natural clustering in the data and if there are outlier samples. It 
may also be possible to ascribe chemical (or biological or physical) meaning to the data 
patterns which emerge from PCA and to estimate what portion of the measurement space 
is noise. Finally, a PCA model can be created and serve as a benchmark for comparisons 
with future samples.

Note: A general understanding of PCA is necessary because of its role in pattern recognition 
described above and because both SIMCA (“Soft Independent Modeling of Class Anal-
ogy” in Chapter 6) and PCR (“Factor Based Regression” in Chapter 7) are based on 
principal components.

A Concrete Example
If the ideas of maximum variance axes and dimensionality reduction are applied to a ba-
nana, the banana’s length axis is its first principal component (PC). A second axis, per-
pendicular to the first, describes the second PC: the span of its curvature. The third PC is 
the axis drawn at right angles to both PC1 and PC2: the fruit’s thickness. The following 
figure shows a banana in perspective and in three different 2D views based on the PC 
axes just described.

Figure 5.17
Banana views

Figure 5.18 shows a perspective view with the three principal component axes superim-
posed. The banana shown in this figure has merely been transformed onto three new plot-
ting axes. No reduction in dimensionality has been achieved; an object possessing x, y 
and z coordinates is still displayed in three dimensions. However, if it were necessary to 
reduce the 3D banana to a planar representation, the view shown in the lower left of 
Figure 5.17, that of PC1 vs. PC2, is the most informative.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.18
A banana with 3 PC

axes

MATHEMATICAL BACKGROUND
PCA is based on the idea of expressing a matrix X (defined in the “Final Remarks” on 
page 4-35) as the product of two other matrices—the scores matrix T and the transpose 
of the loadings matrix L:

[5.14]

Note:  Those unfamiliar with linear algebra might want to read Chapter 17, An Introduction to 
Matrix Math.

The size of the matrices deserves some comment. X contains n rows and m columns, cor-
responding to the number of samples and independent variables, respectively. The scores 
matrix T contains n rows and g columns; the loadings matrix L contains m rows and g 
columns; the transpose of L contains g rows and m columns. The value of g is the number 
of independent variables or samples, whichever is smaller and is often referred to as the 
mathematical rank of the matrix.

If only the first k columns of the scores and loadings matrices (where k is less than g) are 
considered relevant and retained, then

[5.15]

where  is an estimate of X, and the dimensionality of the data is said to have been re-
duced. This language is a bit misleading: it is actually the size of T and L which have 
decreased. Finding an optimal k value is discussed later; see “Estimating the Number of 
Factors in Unvalidated Models” on page 5-21.

Visualization with PCA
The columns of L are the principal components, the new factors which are linear combi-
nations of the original variables; they are also the eigenvectors of XTX. The first loading, 
the m elements of the first column of L, indicates how much each original variable con-
tributes to the first principal component, PC1. The scores matrix T is the projection of 
the samples onto the axes defined by the eigenvectors. Each sample has a coordinate on 
each new axis; the columns of T contain these coordinates.
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5 Exploratory Analysis: Principal Component Analysis
The following figures illustrate these concepts for a data set containing six samples and 
two variables. In the first plot, the two loadings (PC1 and PC2) are overlaid on the orig-
inal variable axes. Note how PC1 aligns with the major spread in the data.

Figure 5.19
Two PC axes with

labeled points (open
circles)

In the next plot, the scores (tij) for two samples are marked to show how the location of 
data points in the original variable space can be expressed in terms of the two new axes, 
PC1 and PC2. While smp1 has approximately equal scores on PC1 and PC2, smp2 has a 
much larger score on PC1 than on PC2.

Figure 5.20
Scores: tik = score of
ith sample on kth PC

Each loading represents the relative contribution of every original variable to a factor ax-
is. Rarely is a factor composed of a single independent variable. Rather, each factor is a 
linear combination of the original independent variables. The contribution of a given 
variable to a given factor is shown by the projection of an arbitrary point on that factor 
axis onto that original variable axis. From Figure 5.21, it is clear that var2 contributes 
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5 Exploratory Analysis: Principal Component Analysis
more to PC1 than does var1, which is another way of saying that var2 is more closely 
aligned with PC1 than is var1. A variable’s loading must be between 1 and -1, and its 
magnitude is a measure of how much the variable loads into the factor. A loading of 1 
implies that the variable coincides with a principal component.

Figure 5.21
Loadings:  lkj =

loading of the jth
variable on the kth

PC

The first PC is the line which minimizes the sum of squares of the distance of each sam-
ple point to the line. Thus, the first factor’s direction aligns with the largest spread in the 
data. The second factor axis must be perpendicular to the first, by definition. Its direction 
is dictated by finding another line which describes the remaining variation in the data.

Modeling with PCA
Associated with each factor axis is an eigenvalue which expresses the magnitude of the 
variance captured by that factor. Eigenvalues decrease in magnitude with each subse-
quent factor because smaller and smaller amounts of the total variance remain unde-
scribed. It is the concentration of variance in the first several PCs which permits the 
omission of later factors without significant loss of information. As implied by equation 
5.15, the transformed and preprocessed independent variable block of the data matrix is 
imperfectly reconstructed from the trimmed scores and loadings, that is, with some re-
sidual error, E, referred to as the X Residuals in this discussion

[5.16]

The subscripts in the above equation indicate not only that the scores and loadings ma-
trices have been trimmed to include the first k factors but also that the residual matrix 
depends on k. While a proper estimate of k implies the number of phenomena giving rise 
to the patterns of variation, an equally important benefit is the creation of a predictive 
PCA model. The trimmed loadings matrix Lk can be stored and used later to examine 
new data sets.

Suppose you have been acquiring a certain raw material from a reliable supplier and that 
you collect and archive spectra of the batches as delivered. You then change suppliers. 
By creating a PCA model from spectra of different batches of raw material from the old 

Ek X Tk– Lk
T=
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5 Exploratory Analysis: Principal Component Analysis
supplier and then collecting a spectrum of the new material, you can compare the new 
material to the old. A score vector for each new sample spectrum xnew is predicted from:

[5.17]

This is often described as projecting the new data into the space defined by the PCA mod-
el. If the predicted scores lie close to the scores of known-to-be-acceptable samples, the 
spectra do not differ significantly. The specifics are described in “Predicting in PCA” on 
page 5-29.

On the other hand, if a sample’s score is separated from the other samples, it may be an 
outlier. The question may then be asked: in what way is this sample different? Score and 
error contributions indicate which variables may cause the sample to be different. See 
“Contributions” on page5-25 for details.

Model Validation

PCA modeling (indeed, most modeling) is based on several key assumptions.
• First, the raw material property being tracked or modeled must be manifested in the 

x-block data. If changes in this property do not produce changes in the data collected 
(spectra in the case described above), then the resulting x block variance patterns 
are irrelevant.

• Second, the training set (i.e., the samples used to create the PCA model) should re-
flect normal batch-to-batch variations. Even the most reliable source cannot supply 
exactly the same material every time. This batch-to-batch variation is crucial for de-
termining significance of differences.

• Third, as is always the case with statistical tests, the user must ultimately set the level 
of significance.

• Fourth, the PCA model must capture only the relevant variation in the training set. If 
factors representing random instrument variation (i.e., noise) are included, the model 
may make misleading predictions when applied to new data. Because the noise 
“structure” in any new data will not be the same as in the model, this portion of the 
new data cannot be properly fit by the model.

This last assumption brings us back to the issue of properly estimating k, the optimal 
number of factors, and begs an important question: how can we distinguish a good model 
from a bad one?

In an ideal world, a large number of samples is available and the correctness of a PCA 
model is determined straightforwardly. Half of the samples are randomly placed in the 
training set and half are designated as the validation set. A PCA model based on a spec-
ified k value is created from the training set. Score predictions are then made on the val-
idation set and, if they are not significantly different from the training set, the model is 
said to be validated and the value chosen for k is deemed appropriate. If, however, the 
predicted values are significantly different, we go back to the training set, change k and 
re-check the predictions until acceptable agreement is reached.

When the training and validation subsets are both representative of the population under 
investigation, this ideal approach guarantees model quality because the model is built 
from and then applied to different subsets of the same population. We can thus avoid in-
cluding factors which capture random variation. On the other hand, if the validation sub-
set has a different noise pattern than the training set, predictions will be poor if training 
set noise factors are included in the model.

Now back to the real world, where training sets are rarely so large as to permit a compre-
hensive external validation, the process just described. A compromise is cross-valida-

tnew xnewLk=
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5 Exploratory Analysis: Principal Component Analysis
tion, which has a long history in the statistical community. It is computationally intensive 
but infinitely superior to a popular alternative, no validation at all.

Cross validation in PCA

Briefly, leave-one-out PCA cross validation proceeds as follows. The first sample is re-
moved from (i.e., left out of) the n member training set. For every k setting a model is 
constructed based on the n - 1 remaining (i.e., left-in) samples, and a prediction is made 
on the left-out sample. Prediction in PCA consists of using the loadings computed from 
the left-out samples to generate the reconstructed X for the left-in sample. The X Resid-
uals vector (see equation 5.16) for the left-in sample for a particular k setting is converted 
to a scalar by summing the square of each element of the vector. This residual sum of 
squares is stored for each k setting. The first sample is returned to and a different sample 
is removed from the training set, a new model is constructed, and a prediction is made on 
the second sample. This process continues until every sample has been left out once, at 
which point a validated residual sum of squares for each sample at each k setting is avail-
able. The matrix of validated error sum of squares for each sample at each k setting is 
then reduced to a vector of k validated model residual variances by averaging the n val-
ues. It is a better estimate of the true model residual variance than what would be com-
puted without cross-validation. How this quantity is computed is shown in equation 5.26. 
For PCA the only residue of cross-validation is this improved estimate of the model re-
sidual variance.

Note: See the Regression Methods chapter for details on PCR, PLS and CLS cross-validation.

At least three types of leave-out approaches are possible: Cross, Step, and Active Class. 
The first two choices are appropriate for PCA, PLS-DA, PLS, PCR and CLS models 
while the last applies only to regression algorithms.

The validation described above left out one sample at a time. Because execution times 
may become prohibitively long for data sets containing many samples, you may choose 
to leave out more than one at a time. You can leave out up to half of your samples al-
though this is not normally recommended. When more than one sample is left out at a 
time, the leave-out pattern must be specified. Table 5.2 illustrates two different leave-out 
patterns for internal validation. In Pirouette, the so-called Step method leaves out sets of 
contiguous samples, whereas the so-called Cross method skips samples in assembling a 
set. In both cases, every sample is left out exactly once and, when the number left out 
divides unevenly into the number of samples, the final set contains fewer samples. The 
different leave-out patterns attempt to minimize bias caused by sample sequence:
• If replicate samples are contiguous, choose step validation

• If your sampling sequence has a periodicity such that replicates occur after predict-
able intervals, choose cross validation

• If the sample order is random, either technique will be satisfactory (but, see note be-
low)

• If you are unsure, choose to leave one out

Note: Leaving out 1 sample at a time when replicates exist produces an over-optimistic esti-
mate of model quality. To avoid this overly optimistic estimate, we often use leave-out-
one-seventh for cross validation.
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5 Exploratory Analysis: Principal Component Analysis
The first and second cases above, which focus on replicates, require some explanation. 
If replicate samples are present in the training set, all must be left out at the same time. 
For n contiguous replicates, this may be accomplished via step validation with a leave-
out # of at least n. For replicates spaced every n samples, a cross validation leave-out pat-
tern may work.

Table 5.2
Leave Out Patterns
on Step and Cross

Validation

Category validation (using the Active Class) 

If your training set contains different numbers of replicates of the different samples, the 
leave-out patterns described above will not work; a category-based approach can be used 
instead (see Table 5.3). The leave-out pattern in this case is governed by a class variable 
activated before the algorithm run, thus the name used in Pirouette, Active Class valida-
tion. The class variable activated must have all replicates assigned to the same class. 
Thus, all samples belonging to one category are left out at a time.

Table 5.3
Leave Out Patterns

on Active Class
Validation

Estimating the Number of Factors in Unvalidated Models
When to stop including factors is a critical decision which crops up in all factor-based 
methods, e.g., PCA, PCR, PLS and SIMCA. It has been the subject of much theoretical 
research and practical investigation. Many ways have been suggested to automate the de-
cision (c.f., Malinowski5).

Because a large amount of variation is compressed in the early factors, there is a point 
beyond which the remaining variation is essentially noise. Thus, we assume we can par-
tition the factors into two camps: one containing relevant information and one containing 
irrelevant information (or noise). Finding the optimal number of factors is a matter of es-
tablishing a border between the two camps since the maximum number of factors, g, is 
much larger than the optimal number of factors, k. Practically this requires calculating 
some criterion which varies with the number of factors extracted. The hope is that when 
the last relevant factor is extracted, the criterion will indicate this condition, perhaps by 
reaching a minimum. Once the optimal number is determined, examination of (and even 
calculation of) additional factors can stop. Because an eigenvalue represents the magni-

Iteration#
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4

Sample1 X X X X X
Sample2 X X X X X
Sample3 X X X X X
Sample4 X X X X X
Sample5 X X X X X
Sample6 X X X X X
Sample7 X X X X X
Sample8 X X X X X
Sample9 X X X X X
Sample10 X X X X X

Leave One Out 
Cross or Step Validation

Lv 2 Out 
Cross-Val

Lv 3 Out 
Cross-Val

Lv 2 Out 
Step-Val

Lv 3 Out 
Step-Val

Iteration#
Category # 1 2 3

Sample1 1 X
Sample2 2 X
Sample3 1 X
Sample4 3 X
Sample5 2 X
Sample6 3 X
Sample7 1 X
Sample8 3 X
Sample9 2 X
Sample10 2 X
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5 Exploratory Analysis: Principal Component Analysis
tude of variation captured by the corresponding factor, it is common to define stopping 
criteria in terms of eigenvalues. Of the several described by Malinowski, Pirouette ap-
plies two—the IND function and the F test on reduced eigenvalues—to estimate the op-
timal number of factors for an unvalidated model.

The IND Function

The Indicator function, IND, is computed from what Malinowski calls the real error, RE. 
After k factors are extracted, the variation associated with the remaining g-k factors is 
found by summing those g-k eigenvalues. The RE is then computed:

[5.18]

From RE we can calculate IND:

[5.19]

If k is varied from 1 to g and IND is computed at each value of k, the optimal number of 
factors corresponds to the IND minimum.

F test on Reduced Eigenvalues

Malinowski suggests that reduced eigenvalues associated with noise are statistically 
equal. The kth reduced eigenvalue is defined as:

[5.20]

Reduced eigenvalues are treated as variances. Thus, as each factor is extracted, an F test 
is used to decide if that reduced eigenvalue is statistically different from the remaining 
reduced eigenvalues. Malinowski suggests pooling the remaining reduced eigenvalues, 
presumably to yield an improved variance estimate:

[5.21]

An F ratio is computed:

[5.22]
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5 Exploratory Analysis: Principal Component Analysis
and compared against values in an F table, with 1 and g - k degrees of freedom at a prob-
ability level of 95% (set internally in Pirouette).

Note: The symbol g represents the lesser of n and m, the number of samples and independent 
variables, respectively. If X is mean-centered or autoscaled and the number of samples 
is less than or equal to the number of independent variables, g is reduced by 1.

Composite Eigenvalue Test

For some data sets, the IND function does not give a true minimum, instead it rises con-
tinuously. For other data sets, the F test suggests much larger optimal values than appear 
reasonable from visual inspection of the eigenvalues. As a result, Pirouette’s estimate of 
the optimal number of factors is an average of the values from the two functions.

The NUMFACT Algorithm

The NUMFACT algorithm6 appears to be a reliable estimator of the number of factors, 
even for data containing highly correlated variables. This method uses a bootstrap (re-
sampling) approach to determine which factors are associated with signal and which with 
noise. 

First, the original data are decomposed by the SVD algorithm (see page 7-4). Next, the 
samples (rows) are resampled (with replacement) to form a second data set of the same 
size as the first. This set is also decomposed via SVD. Then, the eigenvectors of the boot-
strapped data are projected into the factor space of the original data. The concept of this 
approach is that the projections of relevant factors will be large while projections of noise 
factors will be random and, therefore, small. A signal-to-noise computation is performed 
on the sum of squares of the projections for each eigenvector. Those eigenvectors with a 
s/n ratio above a predetermined threshold are considered relevant factors.

Estimating the Number of Factors in Validated Models
A completely different approach to estimating model size involves validation, the pro-
cess of evaluating a model’s predictive ability. In this case model size is inferred from 
stopping criteria based on predictive ability.

Optimizing Models and Finding Outliers
To date, no fail-safe method has been found for determining the optimal number of fac-
tors. You should always look carefully at several diagnostic measures at different k set-
tings before deciding how many factors to retain. One such measure, the residual matrix 
Ek, was defined in equation 5.16. Moreover, detection of outliers is key to estimating the 
optimal number of factors; these unusual samples, which have unique variance patterns, 
can sometimes account for (or grab) a factor. The model seeks to describe the variance 
patterns of typical samples, not atypical ones. Therefore, outliers must be excluded be-
fore successful PCA models can be built. The three quantities described below can often 
reveal unusual samples.

Sample Residual
A sample’s residual variance follows directly from the residual matrix Ek. To make the 
notation less cumbersome, the subscript k will be dropped and hatted symbols will indi-
cate a k factor approximation. The ith row of Ê, a vector êi, is the difference between that 
sample’s original data and its k factor estimate, :x̂i
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5 Exploratory Analysis: Principal Component Analysis
[5.23]

Note: For PCA, even when cross-validation is performed, the validated X Residuals are not 
used to compute the Sample Residual. They are used only to compute the model resid-
ual (variance). Thus, it is possible to compute the Sample Residuals shown in the Outlier 
Diagnostics object from the data in the X Residuals object by using equation 5.24. This 
is not true for PLS, PCR or CLS.

A sample’s residual variance is then:

[5.24]

In Pirouette, the square root of sample residual variance is called the sample residual:

[5.25]

The model residual variance is calculated for the whole training set:

[5.26]

Other terms for s2
0 include model error sum of squares and model residual. The Q-sta-

tistic is a related diagnostic on the sum of squared errors (see “Q Statistic”, below).

If a particular sample residual variance is larger than the model residual variance, it is 
natural to wonder if the sample is an outlier, i.e., it might not belong to the same popula-
tion as the other samples in the training set. An F test is used to decide if two variances 
differ significantly, the appropriate ratio being:

[5.27]

If the left-hand side of equation 5.27 is set equal to a critical value extracted from an F 
table (based on 1 and n - k degrees of freedom and a user-specified probability), a critical 
sample residual can be determined by rearrangement:

[5.28]

This then becomes a threshold for deciding whether a sample residual is “too large”. If a 
sample residual exceeds scrit, that sample may be an outlier.

Q Statistic
Sometimes referred to as the Squared Prediction Error (SPE), Q is related to the sample 
residual variance (equation 5.24), but without normalization. 

[5.29]
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5 Exploratory Analysis: Principal Component Analysis
It is used in the same way as the sample residual to evaluate whether a sample might be 
an outlier and is frequently tracked in statistical process monitoring settings.The critical 
value of Q can be determined from its approximate distribution7. 

Note: Computing the critical value of Q can be time-consuming. Thus, obtaining the threshold 
is optional, and is controlled in the Run Configure dialog box (e.g., see Figure 16.24, on 
page 16-22).

Probability
Another way to flag unusual samples is by determining the probability associated with 
the quantity in equation 5.27 assuming an F distribution with 1 and n - k degrees of free-
dom. As a sample’s probability approaches 1, the chance it is an outlier increases.

Consider, for example, a probability cutoff of 95%. Our null hypothesis is that the two 
variances in the equation are equal. Thus, if the probability value corresponding to the F 
value exceeds 95%, then the hypothesis is rejected, and we infer that the sample was not 
drawn from the same population.

Mahalanobis Distance
For each sample, an overall measure of variability is computed: the Hotelling’s T2 statis-
tic, a multivariate version of the t-test for the equivalence of means8. Although T2 can be 
computed directly from X, in multivariate analysis it is usually based on the scores. The 
distance from the multivariate mean, commonly referred to as the Mahalanobis distance, 
is computed from the k factor score vector:

[5.30]

where S is the scores covariance matrix and  is the mean score vector. Assuming that 
Mahalanobis distance is normally distributed, a critical value MDcrit can be determined 
from an F distribution.

[5.31]

If a sample’s Mahalanobis distance exceeds MDcrit, that sample may be an outlier.

Note: The critical value for the MD has changed slightly from earlier versions of Pirouette to 
conform with work in the process field. Previously it was based on a Chi squared distri-
bution.

Contributions
Pirouette’s outlier diagnostic object contains several measures of how well a sample fits 
a model. Some of these measures relate to how close a sample’s score is to the center of 
the model’s score space. Others relate a sample’s X Residual to the model’s average X 
Residual. However, regardless of whether the diagnostic is of type “in-model” (i.e., 
scores based) or “out-of-model” (i.e., residuals based), it is natural to wonder which vari-
ables contribute to the sample’s unusual outlier diagnostic value. This information could 
be helpful in determining which of the original measurements are causing the problem, 
particularly in discrete variable control scenarios, where sensors can fail/degrade. Below 
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5 Exploratory Analysis: Principal Component Analysis
the two flavors, Score Contributions and Error Contributions, are described. This concept 
of contributions comes from the quality control field.

A sample’s score on factor k can be written as a sum of m terms, one for each variable j.

[5.32]

The score contribution3, ct, retains each of these terms in a vector of m values; there is 
one vector for each sample at a given factor setting:

[5.33]

for j=1, ... ,m. For an example, see “Contributions” on page5-40.

Large score contributions may indicate variables that produce that sample’s unusual 
score, explaining how it differs from the model. 

In some situations, a sample may appear unusual in more than one score, thus an overall 
or total contribution CT can also be computed4 by summing the scaled contribution on 
each score:

[5.34]

The scale factor is the score value divided by the variance in that factor. 

Samples having a variance structure different from the model will have large X residuals 
(see equation 5.23); the Q statistic (see “Q Statistic” on page5-24) flags samples with un-
usual residuals. We can compose an Error Contribution vector, ce, as the components to 
Q.

[5.35]

Thus, if a sample is unusual on an out-of-model measure (e.g., sample residual or Q), the 
contributing variables may be determined from the error contributions.

To summarize, a sample’s score on a particular factor can be broken down into contribu-
tions from each variable, producing Score Contributions. When f factors are considered, 
a sample’s Hotelling’s T2 can be broken down into contributions from each variable, pro-
ducing the Total Contributions object. A sample’s residual sum of squares indicates the 
contribution of each variable, producing the Error Contributions object.

Error Sum of Squares
The sample residual variance described by equation 5.24 can be assembled into a column 
vector with an element for each sample. If each element is squared and the sum corrected 
for the degrees of freedom, a predicted residual error sum of squares (i.e., PRESS) is cal-
culated for the x block in the training set:

[5.36]
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5 Exploratory Analysis: Principal Component Analysis
As the number of factors increases, the quality of the approximation must increase and 
PRESS approaches zero monotonically.

Validated Error Sum of Squares
If the sample residual variance described by equation 5.24 arises during cross-validation, 
a corresponding validated predicted residual error sum of squares (i.e., VPRESS) is 
found:

[5.37]

The cv subscript is added to minimize confusion with the quantity defined in equation 
5.36. As the number of factors increases, VPRESS does not always decrease monotoni-
cally. It may reach a minimum and increase, indicating the models’s predictive ability 
does not improve with the inclusion of more factors.

An F test can determine if two VPRESS values are significantly different.9–10. Note that 
we need only compare those models having fewer factors than the minimum PRESS 
model. For the typical case of more variables than samples,

[5.38]

with Fk compared against tabulated values using k and (n-k-1) degrees of freedom and a 
probability level of 95% (set internally in Pirouette). If there is no significant difference, 
the more parsimonious model, i.e., the one with fewer factors, is chosen. When cross-val-
idation is performed in Pirouette, the number of optimal factors is based on such an F test. 
Like the eigenvalue-based estimate, it is not carved in stone—you may override the de-
fault value.

Modeling Power
Sample residual and Mahalanobis distance are both sample-oriented measures. Modeling 
power varies with k but is variable-oriented. Typically, it is not helpful in determining 
the optimal number of factors to retain but does point out important variables.

For this quantity we first compute a variable residual variance, , using the jth column 
of the residual matrix E:

[5.39]

The total variance of that variable is:

[5.40]

Modeling power is defined as:
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5 Exploratory Analysis: Principal Component Analysis
[5.41]

As the power of a variable to model information in the data increases, MP approaches 1; 
as it decreases, MP approaches 0 (it can also sometimes become negative). Even with 
random data, some variables will exhibit high modeling power so an absolute threshold 
cannot be specified. Instead, the different variables should be compared based on their 
relative modeling power.

NIPALS
There has been considerable research into efficient algorithms for the computation of 
principal components. We have chosen NIPALS (Nonlinear Iterative PArtial Least 
Squares11–14) for PCA because it finds the first k principal components without comput-
ing all factors. (In fact, it is very inefficient at computing all factors.) For details on NI-
PALS and related approaches, see the “Reading List” on page 5-47.

Varimax Rotation
Once a decision has been made about the optimal number of factors in a data set, a natural 
question arises about the meaning of these so-called abstract factors/latent variables. This 
leads to an area of study called factor analysis, which is often incorrectly assumed to be 
synonymous with PCA. Factor analysis has a rich history, a vast literature, and a peculiar 
nomenclature. Typically, an application of factor analysis starts with PCA but does not 
end there. The next step is often a rotation of factors. Pirouette implements several types 
of post-PCA orthogonal rotations. Rotations are an attempt to make factors less abstract 
by aligning them with original variables; see “Rotated Loadings, Scores and Eigenval-
ues” on page 5-41 for more discussion.

Varimax rotation maximizes the variance of the loadings by sequentially rotating PCA 
loadings pair-wise. The rotated loadings matrix F is calculated from:

[5.42]
where R is a rotation matrix and L* is the PCA loadings matrix or a modification of it 
described below. Various methods have been proposed for finding and updating the ro-
tation matrix, R. We use the approach given in Harmon15. Once a trial value for R has 
been found, the matrix F is computed and a pseudo-variance of F, known as the simplic-
ity, is determined:

[5.43]

where the summations are over the k principal components and the m original variables. 
The rotation matrix is then iteratively modified until the simplicity no longer increases.

Pirouette’s several Varimax algorithms differ only in the manner in which the loadings 
are normalized and/or weighted before and after rotation16. The normalization is accom-
plished by dividing each loading vector element by hj, the square root of the communality 
of the jth variable. Communality is a measure of factor variance for a given variable:

MPj 1
ŝj
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5 Exploratory Analysis: Principal Component Analysis
[5.44]

The weighting is applied by multiplying each loading by its singular value, si. A singular 
value is the square root of the corresponding eigenvalue.

After rotation, the normalization is removed by multiplying by the communality. The 
weighting is reversed by dividing by the square root of the communality of each factor, 
hf(i), which is the singular value of the newly-rotated factor:

[5.45]

The loadings treatments described above are defined in Table 5.4. The last method, 
Weighted-Normal, is implemented as described in the mainframe program ARTHUR17.

Table 5.4
Treatments of

loadings during
Varimax rotation

Predicting in PCA
Predictions are made in PCA by projecting new samples, the unknowns, into the PC 
space defined by the k training set loadings, where k is the number of optimal factors. 
The purpose of prediction in PCA is to decide if the new sample differs significantly from 
the training set. This decision is based mainly on the magnitude of the X residuals when 
the new sample is projected into the model factor space: samples significantly different 
will have large residuals. However, to address the scenario shown in the next figure, the 
matter becomes more complicated. There, two unknowns A and B have been projected 
into the space defined by the first two principal components of the training set. Review 
the discussion of “Sample Residual” on page 5-23 before considering the remarks below.

Figure 5.22
A two PC model with

unknowns A and B
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5 Exploratory Analysis: Principal Component Analysis
Unknown A is clearly in the region of the training set samples (the small green dots) 
while B is not. Yet suppose that both have sample residuals (calculated from the square 
root of equation 5.24) which are less than scrit.

Note: Any statement about the magnitude of residuals cannot be verified by examining 
Figure 5.22. Residuals are computed in the multidimensional data space but Figure 5.22 
contains points plotted in two dimensional PC space.

In an attempt to flag B as more unusual than A, the sample residual computation can be 
modified during prediction based on the scores hyperbox, described in the next section. 

Score Hyperboxes
It is convenient to construct a virtual box around the scores on each PC based on the train-
ing set values. Because the edges of this hyperbox are the minimum and maximum score 
value in each factor dimension, the hyperbox is seldom symmetrical about the factor 
space origin. The following graphic shows such a hyperbox.

Figure 5.23
Figure 5.22 with

hyperbox

These bounds are roughly comparable to the confidence ellipse shown in 2D score scatter 
plots (see Figure 5.31, on page 5-35). When a sample projected into the model space falls 
beyond the edge of the hyperbox, this distance can be used to augment the effective sam-
ple residual (see below).

Augmenting the Sample Residual in Prediction
Point B clearly resides outside the hyperbox in Figure 5.23. Increasing its sample resid-
ual by an amount proportional to its distance to the hyperbox edge increases the chance 
that B will be flagged as an outlier. An augmented sample residual (also called a distance) 
is calculated from:

[5.46]

The summation is over the k included principal components and the ratio inside the sum-
mation symbol makes the units match.

Because the augmented sample residual is also involved in the calculation, the probabil-
ity of unknowns outside the hyperbox also increases due to the ratio:

[5.47]
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5 Exploratory Analysis: Principal Component Analysis
The decision to augment the sample residual is controlled in Prediction Preferences (see 
“Prediction” on page 10-19). By default, it is turned off. Before changing the default set-
ting, a prudent user should contemplate and understand the ad hoc nature of this augmen-
tation.

Mahalanobis Distance in Prediction
For each unknown, a Mahalanobis distance can be computed from the its k factor score, 

:

[5.48]

where Sk is the covariance matrix of the training set scores trimmed to k factors, and  
is the mean training set score vector.

RUNNING PCA
The options associated with PCA are described in “PCA Options” on page 16-22. When 
the algorithm runs, it computes and displays many entities (see Figure 5.24) which can 
help you explore the relationships between samples, find sample outliers, choose the op-
timal number of factors and make decisions about excluding variables. Each is described 
below along with ideas about how to examine them. If you are most interested in the vi-
sualization aspects of PCA, your task is simple: focus on the Eigenvalues portion of the 
Factor Select object, the Scores, and the Loadings.

Figure 5.24
PCA computed

objects
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5 Exploratory Analysis: Principal Component Analysis
In addition to the computed objects, information necessary to make predictions is stored 
as a model. A model can be used as soon as it has been created or it can be stored in a file 
separate from the training set data and reloaded later to make predictions on future sam-
ples (see “Saving Models” on page15-6). A Pirouette PCA model is more than just a 
loadings matrix trimmed to k factors. It also contains information about which variables 
were excluded and what transforms/preprocessing options were chosen so that future 
samples are treated in the same way as the training set. Model building is an iterative pro-
cess. You seldom run the PCA algorithm just once and immediately start making predic-
tions. Instead you spend most of your time optimizing your model, that is, finding the 
“best” set of samples, variables and algorithm options.

X Preprocessed
This object contains the actual data processed by the PCA algorithm. These are the values 
after transforms and preprocessing have been applied. It is often useful to examine this 
object in conjunction with others to understand what features are important and to con-
trast it with the raw (that is, original) X block.

The figure below is an example that shows raw data on the left and the X Preprocessed 
data on the right.

Figure 5.25 Raw
data and X

Preprocessed
profiles

Factor Select
Decisions about the appropriate number of factors in a PCA model can be based on the 
eigenvalues and error sums of squares as described in “Estimating the Number of Factors 
in Unvalidated Models” on page 5-21 and “Estimating the Number of Factors in Validat-
ed Models” on page 5-23 respectively. Accordingly, the Factor Select object contains 
both types of computations for every factor extracted. Its table view is shown in 
Figure 5.26.

The first three columns are related to the data set eigenvalues. The Variance column 
holds the eigenvalue associated with each PC, the variation captured by that PC. The Per-
cent column expresses the variation as a percentage; the Cumulative column expresses 
the percentage cumulatively. The largest eigenvalue and thus, the largest variance are al-
ways associated with PC1. As more factors are computed, the associated variance de-
creases. In this case, the first PC accounts for roughly 86% of the total variance and, by 
the third component, over 99% of the x block variance has been captured.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.26
Factor select table

view

The default view of the Factor Select object, a line plot of the Variance column, appears 
in the figure below.

Figure 5.27
Eigenvalues vs.

Factor #

In some situations, it is more informative to plot percentages rather than raw variance. In 
Figure 5.28 both percent and cumulative percent line plots are shown. The only differ-
ence between the Variance trace above and the Percent Variance trace below is vertical 
scale.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.28
Percent Variance

and Cumulative
Percent Variance

The remainder of the Factor Select object holds error sum of squares computations. If no 
validation was specified, only Press Cal (defined in equation 5.36) is shown; otherwise 
both Press Val (defined in equation 5.37) and Press Cal appear. In the next figure, Press 
Cal and Press Val are shown superimposed in a line plot.

Figure 5.29
Press Cal and Press

Val

A graphical handle in the appearance of a diamond is always present in a Factor Select 
line plot, indicating the current setting of k, the number of factors (i.e., PCs) retained. Pir-
ouette initially suggests a value for k based on one of two stopping rules. If cross-valida-
tion was not specified in the run configuration, the diamond position is set by the process 
outlined in “Estimating the Number of Factors in Unvalidated Models” on page 5-21. If 
cross-validation was specified, the diamond position is determined from the Press Val as 
described in “Validated Error Sum of Squares” on page 5-27. Regardless of how it was 
positioned, the user must always critique the setting. For this reason, the diamond’s po-
sition is easily changed. The diamond jumps to wherever the mouse is clicked along the 
x axis. Moreover, any computed result depending on the number of retained PCs auto-
matically updates to reflect the new setting. Typically, the number of factors is changed 
and the effect monitored on some or all of the objects discussed below.
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5 Exploratory Analysis: Principal Component Analysis
Scores
Scores are integral to exploratory analysis because they show intersample relationships. 
A 3D view is particularly informative as it offers an interactive mode: the Spinner Tool, 
the arrow keys, or the Spin Control Buttons change the viewpoint continuously. A 3D 
scores plot is shown below.

Figure 5.30
A 3D scores plot

When examining scores plots, the user must keep in mind the purpose of the investiga-
tion. If a PCA model is the goal (i.e., single category classification), the scores should 
not cluster strongly. If the ultimate goal is multi-category classification and PCA is being 
used as an exploratory technique, sample groupings must correspond to known catego-
ries. If regression is the goal, a single, homogeneous swarm of samples is desirable. The 
existence of more than one cluster in this case suggests that more than one population is 
present.

When scores are shown in a 2D scatter plot, a confidence ellipse is superimposed. During 
PCA modeling, the ellipse represents the 95% confidence level.

Figure 5.31
2D Scores plot

These confidence boundaries are derived from the score variance. The ellipse is centered 
at the origin of the two score dimensions to be displayed. Axis lengths (+/-) are computed 
from
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5 Exploratory Analysis: Principal Component Analysis
[5.49]

where Ai is the ellipse axis for the ith PC, si are the corresponding score standard devia-
tions, f is the critical F value (k,n-k,α) at k factors and a probability level α, and df are 
the degrees of freedom,

[5.50]

Loadings
The Loadings object indicates which variables are most important and which contribute 
little to each PC. A 3D loadings plot is shown next.

Figure 5.32
A 3D loadings plot

Directly comparing line plots of the original data and loadings lets you see which data 
features are captured by a particular PC. Such a comparison is illustrated below.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.33
Comparing line plots

of raw data and the
first loading

The two significant features in the plot of the first loading correspond to the peaks at 874 
and the shoulder peaks at 928 nm, respectively. Because the first factor in this data set 
accounts for over 70% of the variance, the most important descriptive information about 
the data, then, is the inverse correlation between these two peaks.

X Reconstructed
An estimate of the original preprocessed independent variable block based on the first k 
factors can be calculated using equation 5.15. If the effect of preprocessing is undone by 
dividing each row by the training set standard deviation vector and adding to each row 
the training set mean vector, the result is the X Reconstructed object, shown below in a 
line plot.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.34
X Reconstructed

The X Reconstructed object can be compared to the unpreprocessed data, that is, the data 
after transforms have been applied. As more factors are added, the shape of the trans-
formed data and the reconstructed data converge; the reconstruction becomes more ac-
curate.

X Residuals
The X Residuals object is the difference between the transformed data and its k factor 
estimate, X Reconstructed. It is good for pinpointing samples/variables poorly fit by a k 
factor model. It can also verify that the difference between the transformed data and the 
reconstructed data is of reasonable magnitude compared to the uncertainty of the mea-
surement technique. A line plot of this object is shown below.

Figure 5.35
X Residuals

In evaluating the appropriateness of a k-factor model, look for structure in the X residuals 
object. Where structure distinguishable from noise occurs, the corresponding variables 
have not been completely modeled.

Outlier Diagnostics
Pirouette's Outlier Diagnostics object includes measures of how well a sample is approx-
imated by k factors: Sample Residual, Mahalanobis Distance, F Ratio, Probability, and 
the Q statistic. The quantities are discussed in “Sample Residual” on page 5-23, “Mahala-
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5 Exploratory Analysis: Principal Component Analysis
nobis Distance” on page 5-25, “Probability” on page 5-25, and “Q Statistic” on page 5-
24, respectively. A 2D plot of the first two measures, is shown below.

Figure 5.36
Outlier Diagnostics

Samples falling outside one or both of the thresholds are potential outliers. Because the 
sample residual threshold is based on a 95% probability limit (set internally in Pirouette), 
5% of normal samples would be expected to fall outside that cutoff. For this reason in a 
large data set, samples exceeding only one threshold slightly may be normal. However, 
samples lying either significantly beyond one threshold or beyond both are more likely 
to be outliers. You should examine these samples closely, try to understand how they dif-
fer from the others and consider rerunning PCA with those samples excluded.

The Probability object, which is based on the same information as the Sample Residual, 
allows decisions to be made using a metric which ranges from 0 to 1. The magnitude of 
a probability, however, is highly dependent on the degrees of freedom. Typical spectro-
scopic data violates the assumption of uncorrelated variables made in deriving the F dis-
tribution on which the probability computation is based. The degrees of freedom used in 
the calculation is consistent but almost certainly incorrect. Probabilities should be com-
pared relatively and appropriate cutoffs developed over time as the user gains experience 
with the data source.

Modeling Power
A line plot of modeling power vs. variable number is shown below. Modeling power can 
be helpful for finding variables to consider excluding. Note, however, that because mod-
eling power changes as a function of the number of PCs, variables poorly modeled at one 
setting may be adequately modeled at another.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.37
Modeling power line

plot

Contributions
When a sample is suspected of being an outlier, it may be interesting to understand what 
makes the sample different from the other samples in the data set. Examination of the 
Mahalanobis distance may tell us if a sample does not fit the model well, and the score 
plots should indicate on which factor (or factors) the deviation from the model occur. The 
individual or overall score contributions (see equation 5.32) show where the sample’s 
profile differs from the main PCA model.

Figure 5.38
Score contributions

for an outlier sample
(highlighted), (a)

scores plot, (b)
outlier diagnostics,

(c) overall score
contributions, and

(d) factor 4 score
contributions

Here the unusual sample is clearly aberrant in the factor 4 direction, thus observation of 
the factor 4 contribution shows in what variable region the sample differs from those in 
the training set. The overall contribution shows similar information.

On the other hand, if a sample has a high sample residual or Q statistic, it is an indication 
that it is in a space different from the model. These two diagnostics measure how far a 
sample is from the model; the error contributions may indicate which variables cause this 
discrepancy.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.39
Error contributions,

(a) Outlier
diagnostics

indicating potential
outlier, and (b) error

contribution plot
showing cause for

outlier (highlighted)
is in 9th variable

Rotated Loadings, Scores and Eigenvalues
Ultimately, the physical meaning of a factor is inferred from the original variables “load-
ing” most heavily onto it. By considering them as a group, we may be able to understand 
what phenomena give rise to the loadings. One means to accomplish this is via Varimax 
rotation.

In Varimax, pairs of loadings are rotated in a plane orthogonal to all other factors so as 
to “simplify” the factor description of the variables. The simplification is based on a 
least-squares criterion of the loadings15. The result of this simplification is that high load-
ing variables are accentuated and low loading variables are minimized. This has been 
characterized as an approach where “the rich get richer and the poor get poorer.” Ideally, 
rotated loadings point out variables which group together. Note how in the rotated load-
ings plot of Figure 5.40b, the variables, particularly the two isolated variables, tend to 
align with the axes more so than in the unrotated loadings. Note also that the amount of 
variance in the rotated loadings is much more similar than in the unrotated loadings.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.40
Loadings (a)

unrotated (b) rotated

Imagine creating a correlation matrix to identify highly correlated variables. Varimax 
acts on the correlation information to create a new set of axes that are more “pure” in 
terms of the original variables. By noting which variables increase in importance, you 
may be able to infer underlying causes of the variation.

When Varimax rotation is performed, eigenvalues, scores and loadings for the unrotated 
factors are first computed. The designated number of loadings are then rotated, and the 
corresponding rotated scores and rotated eigenvalues computed. The following figure 
compares the unrotated and rotated scores associated with the loadings in the previous 
figure.

Figure 5.41
Scores associated
with Figure 5.40 (a)

unrotated (b) rotated

The next figure shows the eigenvalues associated with the loadings and scores of the pre-
vious figures. Variance is spread more uniformly over the eigenvalues after rotation due 
to the rotation away from the maximum variance directions found by PCA. This is evi-
dent in the first two principal components of Figure 5.42: from 81 and 16% of the total 
variance, rotation causes the relationship to arrive at 55 and 42% of the total. Thus, the 
first two factors now “share” the bulk of the variance more than originally.
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5 Exploratory Analysis: Principal Component Analysis
Figure 5.42
Eigenvalues

associated with
Figure 5.40

(a) unrotated
(b) rotated

MAKING A PCA PREDICTION
Running PCA triggers the creation of a model. You can confirm this by going to Process/
Predict after running the algorithm and noting the entry under Model. Making predictions 
requires a model and a target, that is, a data set with an x block containing one or more 
samples that are often referred to as unknowns. This data set’s x block must have the 
same number of independent variables as the data set from which the model was created 
and cannot contain any excluded independent variables. The prediction target may or 
may not contain dependent and class variables.

Figure 5.43 shows the Configure Prediction dialog box. To get model information, high-
light its entry as illustrated in the figure. To configure a prediction, highlight a model and 
exclusion set and click on Add. You can configure more than one prediction at a time by 
highlighting a different model name or exclusion set and again clicking Add. Predictions 
are made when you click Run.

b

a

5–43



5 Exploratory Analysis: Principal Component Analysis
Figure 5.43
Configure Prediction

dialog box

Factor Select
The Factor Select object displayed after prediction contains the first three columns of the 
training set Factor Select object. It mainly provides a mechanism for changing the num-
ber of model factors during prediction. Initially, the diamond cursor is set at the value 
determined during the modeling phase. However, the user can change the setting and see 
the effect on objects dependent on the number of model factors.

Normally, you would not change the diamond from the initial position defined when cre-
ating the model. However, depending on the nature of the prediction data, you may want 
to evaluate the effect of the model with fewer or more factors.

Scores
The Scores object produced during prediction includes a confidence threshold when ei-
ther a 2D or Multiplot view is displayed. The location of the ellipse depends on the prob-
ability level set in Windows > Preference > Prediction. Figure 5.44 shows an example of 
a confidence ellipse drawn on a 2D scatter plot.
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Figure 5.44
Scores plot with a
confidence ellipse

If an unknown’s predicted score lies outside the thresholds, it is somehow unlike the 
training set samples. You should examine the X Residuals and the Outlier Diagnostics of 
samples which lie well beyond the confidence ellipse.

X Reconstructed
For a discussion of this object, see “X Reconstructed” on page 5-37.

Figure 5.45
PCA Predict X

Reconstructed
object

X Residuals
For an introduction to this object, see “X Residuals” on page 5-38. Unknowns similar to 
the training set have residual values, for all variables, of comparable magnitude and 
structure. However, unknowns differing significantly from the training set (i.e., outliers) 
will have residual values that deviate notably at certain variables, as shown in the figure 
below. Compare Figure 5.35 to Figure 5.46, paying special attention to the difference in 
the y axis scale. In this case, the X Residuals structure of prediction outliers indicates 
what is missing from the training set but present in the outliers. This information can be 
extremely helpful when trying to decide in what way an outlier is different. For example, 
in molecular and mass spectrometry, the residual spectrum might be used to identify a 
contaminant compound.
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5 Exploratory Analysis: References
Figure 5.46
Prediction X

Residuals

The square of the X Residuals are equivalent to Error Contributions, useful for an under-
standing of where among the variables a unusual sample differs from those in a model. 
See “Contributions” on page5-40 for more discussion of contribution plots.

Outlier Diagnostics
This object contains the same three quantities described in “Outlier Diagnostics” on page 
5-38. Note, however, that during prediction, the augmented sample residual defined by 
equation 5.46 (not equation 5.25), the Mahalanobis Distance defined in equation 5.48 
(not equation 5.30), and the probability derived from equation 5.47 (not equation 5.27) 
are computed.

Figure 5.47
Prediction Outlier

Diagnostics

Despite their small differences in computation, prediction outlier diagnostics should be 
interpreted in the same manner as those developed during calibration, that is, samples 
which lay beyond the suggested thresholds should be considered possible outliers.
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n many technical fields, it is not uncommon to accumulate large quantities of data 
comprising a variety of measurements with the ultimate goal of substituting an easy 
determination for a difficult one. Here the term difficult may imply expensive, time-

consuming, or inconvenient while the term easy may imply automated. If the difficult de-
termination is the prediction of a continuous property, the techniques discussed in Chap-
ter 7, Regression Methods are appropriate. However, many problems can be couched in 
terms of category prediction. For example, suppose you want to decide if a product is in 
or out of spec from its UV-vis spectrum. Such a problem requires constructing a classi-
fication model which establishes a relationship between a product’s spectrum and its ac-
ceptability. Pirouette’s approach to classification modeling is described in this chapter.

Classification models can be based on either probability, separability or similarity. The 
probabilistic approach assumes that: (1) measured values for like samples tend toward a 
uniform distribution; (2) measurements on an unknown fall within the allowable distri-
butions of samples belonging to the same class as the unknown; and (3) measurements 
on an unknown can be distinguished from the allowable distributions of values for sam-
ples belonging to other classes. The most well-known instance of probabilistic classifi-
cation derives from Bayes Theorem1. Bayesian methods are very powerful in sample-
rich scenarios, especially where there are many samples in each category and more sam-
ples than variables. The more samples, the better the approximation of the true distribu-
tions by the observed distributions. However, probabilistic methods applied to sample-
poor/variable-rich data often produce models said to be overfit. Overfit models make 
poor predictions. For this reason Bayesian methods are not included in Pirouette.

Separability approaches, also not included in Pirouette, assume that groups can be distin-
guished by finding gaps between them in the measurement space. Some of the earliest 
pattern recognition methods are of this type, including the Linear Learning Machine2 
(LLM) and Linear Discriminant Analysis3 (LDA). All separability techniques tend to-
ward overfitting when variables outnumber samples. In the past, this was irrelevant; most 
data sets were sample-rich because making measurements was such a time-consuming 
endeavor. Today, however, spectroscopic and chromatographic methods routinely gen-
erate hundreds of measurements per sample. In this variable-rich world over-fitting is a 
real concern. Methods based on separability have an additional weakness: instability. 

I
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6 Classification Methods: K Nearest Neighbors
The equation for the plane separating two categories depends on sample order; changing 
that order changes the solution. Finally, neither LDA nor LLM can handle the so-called 
asymmetric case, where one category (e.g., good product) is surrounded in multivariate 
space by another category (e.g., bad product).

Similarity techniques are based on the assumption that the closer samples lie in measure-
ment space, the more likely they belong to the same category. This idea of proximity im-
plies the concept of distance. Pirouette’s two classification algorithms, K-Nearest 
Neighbor (KNN) and Soft Independent Modeling of Class Analogy (SIMCA), are simi-
larity techniques which differ in their distance definition. Both KNN and SIMCA con-
struct models using samples preassigned to a category, i.e., a supervised pattern 
recognition approach. Usually these assignments are derived from knowledge external to 
the independent variable measurement. Sometimes, however, categories must be defined 
based on clusters found during an exploratory analysis because external information is 
not available, i.e., an unsupervised pattern recognition approach. Both algorithms are im-
plemented in two stages. First, a model is built and refined based on a training set (i.e., 
the knowns); later it is used to predict classes of new samples (i.e., the unknowns).

The two methods are complementary in many respects. KNN is well-suited to a sample 
poor environment; it can function even with only one training set sample per category 
and performs adequately when categories are sub-grouped. It is simple to understand and 
the model refinement phase can be brief since KNN provides few diagnostics. A KNN 
prediction consists of assigning each unknown to one and only one category defined in 
the training set. In contrast, SIMCA requires that each training set category be a homo-
geneous group of several samples, and model refinement and prediction are much more 
complicated. Many diagnostics are available and examining all can be time-consuming. 
The payoff is a detailed picture of model structure and more realistic prediction options. 
An unknown in SIMCA can be assigned to more than one category and a probability for 
each assignment is calculated. Moreover, an unknown may be deemed to belong to none 
of the categories included in the training set.

The remainder of this chapter is devoted to a description of Pirouette’s two most reliable 
classification algorithms. The mathematical basis of each is given and the computed ob-
jects detailed.

Both of these algorithms require that a class variable be activated (see “Activating a Class 
Variable” on page 13-19). If only one class variable is present in the file, that variable 
will be activated upon opening the file. However, if more than one class variable is pres-
ent, you should choose which will be used by the classification algorithm.

Beginning with version 4.0, Pirouette enables the use of another algorithm for perform-
ing classification, PLS Discriminant Analysis. PLS-DA uses the PLS algorithm to build 
regression models correlating the information in the X block to binary Y variables. For 
details on this algorithm and its use, see “PLS for Classification” on page 7-38.

K Nearest Neighbors

KNN attempts to categorize an unknown based on its proximity to samples already 
placed in categories4. Specifically, the predicted class of an unknown depends on the 
class of its k nearest neighbors, which accounts for the name of the technique. In a fash-
ion analogous to polling, each of the k closest training set samples votes once for its class; 
the unknown is then assigned to the class with the most votes. An important part of the 
process is determining an appropriate value for k, the number of neighbors polled.
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6 Classification Methods: K Nearest Neighbors
MATHEMATICAL BACKGROUND
The multivariate distance used in KNN is similar to the distance separating two points in 
a plane, but with N coordinates in the calculation, rather than two. The general expression 
for this Euclidean distance, dab, is:

[6.1]

where a and b are the data vectors for the two samples. A data vector contains the m in-
dependent variable measurements made on each sample. HCA, discussed in Chapter 5, 
Exploratory Analysis, is based on this same Euclidean distance.

In the KNN model building phase, the Euclidean distance separating each pair of samples 
in the training set is calculated from equation 6.1 and stored in a distance table. For any 
particular sample, the classes of its nearest neighbors can be tallied and the sample as-
signed to the class to which most of the nearest neighbors belong. If two (or more) classes 
get the most votes, the tie is broken based on accumulated distances, i.e., distances are 
summed instead of votes. The sample in question is then considered to belong to the class 
with smallest accumulated distances.

To distinguish between the a priori category assignment and the assignment inferred 
from the KNN algorithm, we use the terms m-class (for measured) and p-class (for pre-
dicted). During model building, we look for m-class and p-class agreement. Substantial 
agreement suggests that the a priori assignments are reasonable and that sample similar-
ity is embodied by the independent variable responses. Where disagreements exist, they 
may be caused by outliers: samples either with incorrect m-class assignments or associ-
ated with flawed independent variable measurements. Disagreements may also arise 
from an inappropriate k value. The value of k can range from 1 to one less than the total 
number of samples in the training set. However, when k approaches the size of the train-
ing set, the kth nearest neighbor is actually a far away neighbor.

The following simple example illustrates some key ideas in KNN.

NEAREST NEIGHBOR EXAMPLE
Table 6.1 contains a small data set which is plotted in Figure 6.1.The data set contains 
five training set samples (A through E) and one unknown (?). Three measurements have 
been made on the five samples.

Table 6.1
Data for five training
set samples and an

unknown

dab aj bj–( )2

j 1=

m

=

1 2/

var1 var2 var3
A 1.0 2.0 3.0
B 1.1 1.9 2.9
C 2.1 1.0 2.4
D 0.9 2.0 3.0
E 2.0 0.9 2.3
? 1.9 1.1 1.8
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6 Classification Methods: K Nearest Neighbors
Figure 6.1
3D plot of Table 6.1

data

It is clear from looking at the raw data in Table 6.1 that A, B and D resemble each other 
more than either resembles C or E. The 3D plot in Figure 6.1 emphasizes that point; sam-
ples A, B and D are yellow while C and E are red. A three-variable example allows us to 
completely visualize the relationships between samples. Table 6.2 contains the intersam-
ple distances. Because the table is symmetrical about the diagonal, only half the entries 
are shown.

Table 6.2
Intersample

distances for
Table 6.1 data

We can see from both Figure 6.1 and the last column in Table 6.2 that the unknown is, 
in fact, closest to C and E.

Suppose we now supply the additional information which must be included in a training 
set, the a priori m-class assignments. Let’s assume that A, B and D belong to Category 
1 while C and E belong to Category 2. Part of the modeling phase consists of deciding 
whether to poll 1, 2, 3, or 4 neighbors. This can be accomplished by looking for p-class 
and m-class agreements in the training set.

If we poll only the nearest neighbor (i.e., k=1), the p-class and m-class of all training set 
samples coincide. If two neighbors are polled, the agreement persists. Polling results for 
k =2 are always identical to that for k =1 because of the KNN tie-breaker mechanism. If 
the nearest neighbor is of a different class than that of the second nearest neighbor, the 
p-class of a test sample is based on the actual distances to the samples casting the tying 
votes. A 1 to 1 tie is resolved by choosing the class of the first nearest neighbor; by defi-
nition, it has the shorter distance to the test sample.

var1

var2

var3

E

?

A
B

C

D

A B C D E ?
A 0 0.173 1.603 0.100 1.643 1.749
B 0 1.435 0.245 1.473 1.578
C 0 1.673 0.173 0.640
D 0 1.706 1.803
E 0 0.548
? 0
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6 Classification Methods: K Nearest Neighbors
If the three nearest neighbors of each sample are polled, two misses occur. Both C and 
E, which are assumed to belong to category 2, have p-classes of 1 since two of their three 
nearest neighbors vote for class 1. If four nearest neighbors are polled, the same two 
misses occur. If we decide to tolerate no misclassifications in the training set, k should 
be fixed at 2.

If the category of the unknown is predicted with k = 2, sample “?” is assigned to Category 
2 because the two nearest training set samples, C and E, both belong to that category.

RUNNING KNN
Before running KNN, it is necessary to activate a class variable; for instructions and for 
the rules governing class variables, see “Class Variables” on page 13-19. Then, to con-
figure a KNN run, the user must select preprocessing options and transforms and specify 
a maximum k value, that is, the largest number of neighbors to be polled, which is denot-
ed kmax. A rule of thumb for this setting is less than twice the size of your smallest cate-
gory. When the KNN algorithm is run, the number of neighbors polled ranges from 1 to 
kmax, and each sample is classified in this way for every value of k. The Configure Run 
parameters for KNN are shown below.

Figure 6.2
Configuring a KNN

run

The six objects produced by KNN are described in this section. What information they 
contain and how they should be viewed and manipulated is detailed. In addition to the 
computed objects, a model containing information necessary to make predictions is cre-
ated. This model is automatically stored along with the KNN objects. It can also be stored 
in a file separate from the training set data and algorithm results and reloaded later to 
make predictions on future samples. A Pirouette KNN model contains information about 
which variables were excluded and what transforms/preprocessing options were chosen 
so that future samples are treated in the same way as the training set. Model building is 
an iterative process. You seldom run the KNN algorithm just once and immediately start 
making predictions. Instead you spend most of your time finding the “best” set of sam-
ples, variables and algorithm options; see “Optimizing the Model” on page 6-10.

X Preprocessed
Preprocessing will have an impact on the quality of the model you produce. This object 
allows you to visualize the effect on the raw data and allows you to evaluate sections of 
6–5



6 Classification Methods: K Nearest Neighbors
the data range that may not have much impact on the classification model because of ei-
ther invariance or randomness: see “X Preprocessed” on page 5-32

Votes
This object holds the basic result of a KNN classification: the p-class for each sample at 
each k value. Votes is a matrix having n rows and kmax columns, where n is the number 
of training set samples. The first column of this matrix holds the p-class for each training 
set sample when only one neighbor (the nearest) is polled. The last column holds the p-
class for the samples when the kmax nearest neighbors are polled. Thus, column number 
corresponds to k setting. Figure 6.3 shows Votes for the example training set shown in 
Figure 6.1. When k=2, sample 17 is placed in category 3; however, when k=3, it is placed 
in category 2.

Figure 6.3
Votes

The Votes object can be a little overwhelming in the table view if the number of samples 
and/or categories is large. A line plot view with sample # on the x axis and p-class on the 
y axis simplifies things considerably. Figure 6.4 shows such a line plot.
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Figure 6.4
Line plot of Votes;
red trace for K=1,

green for K=3

A single trace means that every sample’s p-class does not change with k. This is observed 
only when categories are extremely well-separated. More often, multiple traces with 
peaks or dips occur for samples whose p-class varies with the number of neighbors 
polled. The line plot of Votes shown in Figure 6.4 confirms that the highlighted sample 
changes from category 3 to category 2 when k is changed from 2 to 3 neighbors.

Another view of Votes tracks misclassifications for a particular number of nearest neigh-
bors. A 2D scatter plot with sample # on the y axis and the k value of interest is very ef-
fective in pointing out misclassified samples if the class variable has been activated. Such 
a plot is shown in Figure 6.5.

Figure 6.5
Votes as a 2D plot

Here, the results from using 5 neighbors are plotted. For 3 of the categories, no samples 
are misclassified. Category 1 samples (in brown) stack vertically, with no brown-labelled 
samples elsewhere in the plot. Similar observations can be made regarding categories 3 
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6 Classification Methods: K Nearest Neighbors
and 4. However, two Category 2 samples (in red) have been misclassified. Plotting in this 
manner quickly pinpoints classification errors.

Total Misses
If Votes entries (p-classes) are compared to the a priori assignments (the m-classes), a 
more informative object, Total Misses, is created. It is generated by first replacing Votes 
entries with zero if the m-class and p-class coincide and by one if they differ and then 
summing down the columns. It indicates the total number of misclassifications (or miss-
es) at each k setting. As such, it is key in determining the optimal number of neighbors 
to be polled. The Total Misses corresponding to the Votes matrix of Figure 6.3 is shown 
in Figure 6.6.

Figure 6.6
Total Misses with the

diamond at k=1.

The diamond at k=4 indicates the current setting for the optimal number of neighbors. 
Pirouette always initially positions the diamond at the minimum k which yields the min-
imum misses. You can move the diamond to another k setting by clicking the left mouse 
button above the desired k value on the trace.

When k is much larger than the smallest training set class, the total number of misses 
tends to increase. To understand why, consider a test sample belonging to the smallest 
m-class and located near the other samples in that class. When k is less than the number 
of samples in the class, the test sample receives votes mostly from its fellow m-class 
members. However, as more neighbors are polled, the votes of samples belonging to an-
other (presumably more distant) m-class eventually predominate and the test sample is 
misclassified.

Misclassifications and Total Misses
The third KNN object, Misclassifications, summarizes classification success by catego-
ry. For a given k setting, a square table is constructed with as many rows and columns as 
training set classes. The row labels—MeasN—correspond to the training set m-classes, 
and the column labels —PredN—correspond to the p-classes. The entries along the de-
scending diagonal of the table indicate the number of samples correctly classified; off–
diagonal entries are the number of samples misclassified. The Misclassifications entries 
depend on the diamond setting in Total Misses. When the diamond is moved, this object 
is recalculated and the values may change.

2 4 6 8 10

# of Neighbors

0

2

4

6

M
is

se
s

6–8



6 Classification Methods: K Nearest Neighbors
Two Misclassifications objects are shown in Figure 6.7 in the table view. The upper cor-
responds to k=4 while the lower corresponds to k=5. Note that the sum of the off-diago-
nal elements in this object must equal the Total Misses for the corresponding k setting.

Figure 6.7
Misclassifications

objects for:
(a) k = 4, (b) k = 5

Class Fit and Fit Thresholds
KNN classifies every sample into the closest training set m-class but the user is left won-
dering if that category is close enough, i.e., is the assigned category a reasonable conclu-
sion. To qualify the prediction result, the Class Fit (or “goodness”)5, has been 
incorporated into Pirouette. The basic idea is to compute the distance of the sample to the 
nearest member of its predicted class and then compare that value to some distance which 
estimates class “diameter”. If the distance to the class is significantly larger than the class 
“diameter”, the likelihood the sample belongs to that class decreases. The estimate of 
class “diameter” is the average of the smallest intersample distances for each training set 
sample in the class.

Thus, Class Fit, gi is computed from

[6.2]

where di is the distance of the sample to the nearest member of the class, and dq is a vec-
tor containing the smallest distances of each category member to all category members. 
The denominator contains the standard deviation of dq.

Class Fit is calculated for every sample against all classes. The resulting matrix is most 
easily displayed as a multiplot as shown below. The metric, similar to a t value, indicates 
the number of standard deviation units the sample’s distance is from an average (i.e., ex-

gi
di dq–
sd dq( )
----------------=
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6 Classification Methods: K Nearest Neighbors
pected) distance in the class. Thus, the plot has a threshold derived from the t distribution 
with α = 0.05 and degrees of freedom equal to the number of samples in the class.

Figure 6.8
Class Fit object

Interpretation of a Class Fit plot is like that of a decision diagram. Samples laying to the 
left of the vertical threshold qualify as members of the category on the x-axis, while sam-
ples below the horizontal line would be members of the category on the y-axis.

The Class Fit Thresholds object is simply a list of the values for the t distribution thresh-
olds for each class in the dataset.

Class Fit can bolster confidence in a good classification but can also flag possible outli-
ers. Values smaller than the threshold are a good indication that the sample qualifies as 
a class member. Negative values occur when the sample’s distance is smaller than the 
class average. Because the threshold line is determined from a distributional statistic, 5% 
of the population is expected to exceed it. Control over the statistic is possible in KNN 
predictions; see “Class Fit” on page 6-14.

Do not examine Class Fit plots to determine predicted category. A sample may have a 
very small Class Fit value for a category it does not belong to. Remember that Class Fit 
is based on the distance to the single nearest neighbor; the predicted class, however, may 
be based on k > 1.

Note: The Class Fit will not be computed if there are fewer than 4 samples in a category.

OPTIMIZING THE MODEL
The model must be optimized after the algorithm runs. This requires determining an ap-
propriate value of k, the number of neighbors polled. It also may be advantageous to find 
and remove gross outliers from the training set, particularly if the number of samples per 
category is small. In addition, you may want to exclude variables which do not distin-
guish insufficiently separated categories.
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This last process is the most straightforward. Because the KNN algorithm yields no vari-
able-based diagnostics, decisions about excluding variables must be made by examining 
line plots of the original data. Figure 6.9 contains a line plot of the data used in the pre-
vious discussion, which demonstrates that at least the first 4 or 5 variables are helpful in 
distinguishing among the categories. For large data sets, activating the class variable be-
fore (or after) plotting greatly simplifies the task of deciding if classes can be distin-
guished by a variable or variable region, based on their line colors. See “Activating a 
Class Variable” on page 13-19 for a discussion of the Activate Class function, which 
maps color to samples based on class.

Figure 6.9
Line plot of example

data set

Choosing an appropriate k setting and identifying outliers are related tasks. If k is too 
small and classes overlap or outliers are nearby, a sample’s p-class may be unduly influ-
enced. If k is too large, a sample’s p-class is skewed toward large nearby classes.

Before choosing a value of k, you should know how many categories are in your training 
set and the size of each. This, along with the nature of the problem you seek to solve, 
should give you an idea of how many total misclassifications are acceptable. For exam-
ple, you may feel comfortable if 95% of your samples classify correctly in your opti-
mized model and if no class contains more than one misclassification.

A general strategy for determining k involves inspecting the Misclassification object at 
various k settings. Check to see if misses are concentrated in two classes. For example, 
suppose that most of your misses are in classes 3 and 7. If Misclassification indicates that 
class 3 misses predict into class 7 and that class 7 misses predict into class 3, this is evi-
dence of class overlap. Detect this problem during the model building phase so you can 
view later predictions for overlapped classes with some skepticism.

If misses are distributed over many classes and if the same samples misclassify at differ-
ent k values, this is consistent with outlier behavior. It is a good idea to compare line plots 
of a potential outlier and samples in both its m-class and p-class before excluding it. Per-
haps the outlier has the wrong m-class, that is, it actually belongs to a different class in 
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the training set. Fortunately, when the number of outliers is small compared to the class 
size and to the optimal k, their influence is negligible.

Note: When the training set has a very small number of samples, you may be forced to choose 
1 for the optimal number of neighbors. Such a low value is usually discouraged because 
of the greater chance of a misleading prediction when classes are not well-separated or 
contain outliers. A value of k between 3 and 5 is preferable.

After excluding samples or variables, you must rerun the KNN algorithm. Moreover, if 
you are not satisfied with the number of misses in the optimized model resulting from the 
preprocessing and transforms set initially, you may want to investigate other configura-
tions (e.g., “Transforms”).

HCA AS A KNN VIEWING TOOL
KNN and HCA (discussed in Chapter 5, Exploratory Analysis) are very closely related; 
both start by calculating multivariate distances for pairs of samples. The Single Linkage 
dendrogram is a graphical representation of a KNN model with k=1. Thus, it can indicate 
whether a particular data set is likely to produce a viable KNN model. Compare the m-
classes to the class variable created when you activate a class from the dendrogram view; 
see “Creating Class Variables” in Chapter 12. The similarity of those two listings of class 
variables provides a form of diagnostic of modeling potential.

MAKING A KNN PREDICTION
When you have optimized your KNN model, you are ready to make predictions with it. 
To see a list of all loaded models of all types, go to Process/Predict. Click on an entry 
under Model to display information about it. Figure 6.10 shows a typical KNN model en-
try and its associated information.

Figure 6.10
Configure Prediction

dialog box
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To make a KNN prediction, go to Process/Predict and select a model and a target exclu-
sion subset. You can configure several predictions at once. Clicking on Run triggers the 
predictions.

Note: Grayed exclusion sets contain excluded variables and cannot be configured.

Class Predicted
The predicted class of each sample in the prediction target exclusion set is tabulated in 
the Class Predicted object. Note that every sample in the target exclusion set has one and 
only one p-class. The predicted category of the first 10 samples are highlighted in 
Figure 6.11.

Figure 6.11
Class Predicted

Misclassification Matrix
The prediction Misclassifications object differs from the modeling analog in that the ta-
ble contains an additional line—Unmodeled—which shows the predicted category for 
those samples not assigned an a priori category value or assigned to a category not pres-
ent in the model. An example result follows.
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Figure 6.12
KNN

Misclassifications
during prediction

Note: The Misclassification Object will be computed only if there is a Class variable in the pre-
diction set which has the same name as the Active Class used during the modeling 
phase. The name match is case sensitive.

In the example above there are 12 samples with categories not represented in the training 
set model; they are summarized in the last row labeled Unmodeled. These samples are 
still classified, however.

Class Fit
The Class Fit object produced during KNN prediction has the same utility as that de-
scribed in “Class Fit and Fit Thresholds” on page 6-9. One difference is that the user can 
set the Probability level associated with the threshold. Use the values to confirm the KNN 
prediction or, if the value falls beyond the threshold, consider that the sample may not 
belong to the predicted class. 
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Figure 6.13
KNN Prediction

Class Fit object, with
5 objects

disqualified (circled)

Note: Training set samples also present in a prediction set will have Class Fit values equal to 
the negative of the average of the minimum class distances divided by the standard de-
viation of the minimum class distances. Because these samples are also in the model, 
the distance to the nearest sample is 0, each sample being its own nearest neighbor.

Soft Independent Modeling of Class Analogy

The Soft Independent Modeling of Class Analogy (SIMCA) method was first introduced 
by Svante Wold in 19746. Since that time the acronym has changed, but the functionality 
of the method has been demonstrated and enhancements offered by a number of research-
ers7. In contrast to KNN, which is based on distances between pairs of samples, SIMCA 
develops principal component models for each training set category. Later, when the x 
block of a new sample is projected into the PC space of each class, the new sample is 
assigned to the class(es) it best fits.

Reliable classification of new samples (i.e., unknowns) is the ultimate goal of SIMCA. 
However, the technique also provides a rich set of diagnostics which address other inter-
esting aspects of classification. For example, modeling power points out the most import-
ant variables in the training set, and Mahalanobis distance provides a probabilistic means 
of identifying and ranking outliers. Moreover, the variance structure of each class yields 
clues about category complexity and may even reveal the phenomena which cause one 
category to differ from another.

A very attractive feature of SIMCA is its realistic prediction options compared to KNN. 
Recall that KNN assigns every sample to exactly one training set class, the so-called 
nearest neighboring class, even though this class may not be near in any absolute sense. 
SIMCA, however, provides three possible prediction outcomes:
• The sample fits only one pre-defined category

• The sample does not fit any pre-defined categories

• The sample fits into more than one pre-defined category
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6 Classification Methods: Soft Independent Modeling of Class Analogy
In addition, because these decisions are made on the basis of statistical tests, we can ex-
press outcomes probabilistically.

MATHEMATICAL BACKGROUND
In SIMCA, each training set class is described by its own principal component (PC) mod-
el. The underlying mathematics is discussed in “Principal Component Analysis” in 
Chapter 5. The material in “Mathematical Background” on page 5-16 up to “NIPALS” 
on page 5-28 is pertinent to SIMCA, and the reader is strongly encouraged to review it 
to become generally familiar with PCA modeling and its various results (e.g., loadings, 
scores, modeling power, sample residual, etc). When a prediction is made in SIMCA, 
new samples insufficiently close to the PC space of a class are considered non-members. 
This approach is similar to that developed in “Predicting in PCA” on page 5-29. Addi-
tionally, SIMCA requires that each training sample be pre-assigned to one of Q different 
categories, where Q is typically greater than one. Thus, SIMCA can be considered a Q-
class PCA with Q > 0.

Four important topics remain: (1) the between class measures, that is, how class separa-
tion is quantified when Q > 1; (2) measures of variable importance unique to SIMCA; 
(3) how a sample is assigned to none, one or, if Q > 1, to several categories; and (4) char-
acterization of prediction reliability. These matters are treated below in terms of a two-
class case to simplify the discussion.

Between Class Measures
The PC models for the two classes are embodied by two trimmed loadings matrices, L1 
and L2. The class 1 samples can be fit to the class 2 model by projecting their transformed 
and preprocessed x block, , into the space defined by the class 2 loadings:

[6.3]

The residuals, E, are defined as

[6.4]

where E is a matrix containing a row vector ei for each class 1 sample. A between class 
residual for each sample in class 1 can be defined as:

[6.5]

where k2 is the number of factors (i.e., principal components) in the class 2 model and n1 
is the number of class 1samples. The computation described by equation 6.5 is repeated 
for each pairwise combination of Q classes to yield a Q by Q matrix. Note that this matrix 
is not symmetrical, that is, ; fitting class 1 samples to the class 2 model is not 
equivalent to fitting class 2 samples to the class 1 model. For classes which are well-fit 
to themselves and well-separated from others, the diagonal matrix elements (which are 
the residuals of a class fit to itself) should be considerably smaller than the off-diagonal 
values.

Information about class separability can be presented in another way. For any pair of 
classes and the between class residual defined above, the between class distance is:
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[6.6]

The computation described by equation 6.6 can be repeated for each pairwise combina-
tion of Q classes to yield a Q by Q matrix. This matrix is symmetrical and the diagonal 
elements are all zero because D11 = D22 = 0. Large between class distances imply well-
separated classes. A rule of thumb: classes are considered separable when the class dis-
tance is greater than 38.

Measures of Variable Importance
It might be desirable to have a single metric of modeling power across all Q classes. Total 
modeling power is such a measure. It is analogous to the modeling power defined in 
equation 5.41 and is derived from the variable variances defined in equation 5.39 and 
equation 5.40. For each class q, the variable residual variance is computed from the jth 
column of E:

[6.7]

For each class, the total variance of that variable is also computed:

[6.8]

The quantity in equation 6.7 is corrected for the number of factors in each class model 
and summed over all classes:

[6.9]

The quantity in equation 6.8 is also summed over all classes:

[6.10]

The Total Modeling Power is then:

[6.11]

Total Modeling Power is useful for determining which variables have little or no impor-
tance for any class in the training set. It typically ranges from 0 to 1 although it can be-
come negative.

It may also be instructive to know which variables are best at discriminating between 
training set classes. For each variable, comparing the average residual variance of each 
class fit to all other classes and the residual variance of all classes fit to themselves pro-
vides an indication of how much a variable discriminates between “correct” and “incor-
rect” classification. The Discrimination Power is thus defined as:
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[6.12]

The residual vector  denotes the jth column of the residual matrix after fitting training 
set samples in class r to the model for class q. The double sum in the numerator is eval-
uated for the cases in which q does not equal r.

Predicting the Class of an Unknown
An unknown (that is, a sample with no previously assigned category) can be fit to both 
the class 1 and class 2 models. When fit to class 1, it produces a residual vector:

[6.13]

where the u subscript indicates the unknown. From the residual vector a residual variance 
can be calculated:

[6.14]

The square root of this residual variance can be compared to a critical value calculated 
from

[6.15]

where the critical F value is based on 1 and n-k1 degrees of freedom and s01 is the square 
root of the class 1 variance as defined by:

[6.16]

Note: If X is mean-centered or autoscaled and the number of samples is less than or equal to 
the number of independent variables, all occurrences of the term n-k become n-k-1.

If su1 is less than scrit1, the unknown is assigned to class 1.

The same process can be repeated for class 2: if su2 is less than scrit2, the unknown is as-
signed to class 2. If the unknown qualifies as a member of both classes, the class having 
the smallest sample residual is considered the best, and the other class is deemed next 
best. If the unknown exceeds both critical values, it is assigned to neither class.

Category prediction in SIMCA is parameterized in the same way as PCA; see “Score Hy-
perboxes” on page 5-30 for a discussion of the Standard Deviation Multiplier and Prob-
ability Threshold settings. Thus, when the SIMCA Standard Deviation Multiplier is 
changed (via Windows > Preferences > Prediction) from its default value of 0, the state-
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ments in the previous paragraphs should be couched in terms of the square root of the 
augmented sample residual as defined by equation 5.46.

RUNNING SIMCA
Before running SIMCA, it is necessary to activate a class variable; for instructions and 
for the rules governing class variables, see “Class Variables” on page 13-19. The algo-
rithm options associated with SIMCA are described in “SIMCA Options” on page 16-24. 
When the SIMCA algorithm executes, many computed objects are created and displayed. 
In addition, information necessary to make predictions is stored in memory as pieces of 
a classification model. A model can be used as soon as it has been created or it can be 
stored separately from the file containing the training set data and reloaded later to make 
predictions on future samples. A SIMCA model is more than just a set of trimmed load-
ings matrices for each class. It also contains information about which variables were ex-
cluded and what transforms/preprocessing options were chosen so that future samples are 
treated in the same way as the training set.

The objects computed during SIMCA can help you find sample outliers, choose the op-
timal number of factors for each class, and make decisions about excluding variables. 
Keep in mind that model building is an iterative process. You will seldom run a SIMCA 
algorithm just once and immediately start making predictions. Instead you will spend 
most of your time optimizing your model, that is, finding the “best” set of samples, vari-
ables and configuration parameters.

When SIMCA is run, objects particular to each training class (i.e., the intraclass objects), 
are stored in folders separate from the interclass objects, as shown in Figure 6.14. Be-
cause all of SIMCA’s intraclass objects are also created by PCA, the reader is again re-
ferred to discussions of “Scores” on page 5-35, “Loadings” on page 5-36, “X 
Reconstructed” on page 5-45, “X Residuals” on page 5-38, “Outlier Diagnostics” on 
page 5-38 and “Modeling Power” on page 5-39. The interclass objects described below 
will help you decide if the classes are sufficiently separated to produce reliable predic-
tions once the class models have been optimized as described in “Class Distances” on 
page 6-22.
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Figure 6.14
SIMCA results in the

Object Manager

Interclass Residuals
The Interclass Residuals, described in “Between Class Measures” on page 6-16, are pre-
sented initially in a table view, as shown in Figure 6.15. Note that the column headings 
contain a suffix which reports the current number of factors set for that category’s model.

Figure 6.15
Interclass Residuals
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Interclass Distances
The Interclass Distances, described in “Between Class Measures” on page 6-16 and pre-
sented initially in a table view, is shown in Figure 6.16. Note that the column headings 
also contain a suffix which reports the number of factors for that category’s model.

Figure 6.16
Interclass Distances

As the distance between two class decreases, the likelihood of new samples classifying 
into both increases.

Discriminating Power
The quantity described by equation 6.12 is called the Discriminating Power; an example 
is shown below.

Figure 6.17
Discriminating

Power

A value close to 0 indicates low discrimination ability in a variable, while a value much 
larger than 1 implies high discrimination power. In the above figure, the variables be-
tween 1700 and 1800 nm provide the most discriminating power.

Note: In contrast with the modeling power, it is not generally advised to exclude variables 
based solely on low Discrimination Power. Removing low discriminating variables has 
the effect of overly enhancing the separation between classes, at the expense of truly 
representative PC models.

Total Modeling Power
Total modeling power, shown next, is a measure of the importance of a variable to de-
scribe information from all training set classes.

Full Data:SIMCA:Discriminating Power
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Figure 6.18
Total Modeling

Power

Class Distances
During prediction (either the self-prediction that occurs when evaluating the training set 
or the prediction of unknowns), the (augmented) sample residual for each test sample fit-
ted to each class is computed as described in “Predicting the Class of an Unknown” on 
page 6-18. The values, which are often called distances, are accumulated in the Class 
Distances object. By default, the information in this object is presented in a multiplot 
view where pairwise combinations of classes form the subplot axes. Such a multiplot is 
shown below.

Figure 6.19
Multiplot of Class

Distances

A single subplot when zoomed results in a display like that in the following figure. The 
two threshold lines are the scrit values for each training set. Any sample can be visually 
classified by observing its position in the appropriate class distance subplot. 

The threshold lines divide the plot into four quadrants. A sample in the NW quadrant is 
a member only of the x axis class; its distance to that class is small enough for it to be 
considered a member of the class. A sample falling in the SE quadrant is a member only 
of the y axis class. A sample in the SW quadrant could belong to either category and one 
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in the NE quadrant belongs to neither. These plots can be thought of as decision dia-
grams, as described by Coomans9. They present classification information visually and 
also draw attention to borderline cases, samples lying close to one or both thresholds.

Figure 6.20
Class Distances

subplot

Class Predicted
Because SIMCA can classify samples in one of three ways, the predicted class of a sam-
ple may be more complicated than the TestVote single category assignment produced by 
KNN; it may contain more than one class assignment. The object shown below comes 
from a training set containing several categories. 

Figure 6.21
Class Predicted

showing a sample fit
to two classes

When a sample qualifies as a member of one class and as a nonmember of all other class-
es, a straightforward assignment is possible. For example, the 18th sample in the table is 
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assigned unambiguously to category 5 while the 9th fits only category 2. We can tell that 
the assignments are unambiguous because the NextBest category for these samples is 0. 

Note: A predicted class of 0 signifies no matching training set category. However, you cannot 
assign training set samples to class 0 and then run SIMCA with this class. See, also, 
“Class Variables” on page 13-19.

A non-zero value in the NextBest column indicates that some samples qualify for mem-
bership in more than one class. The 17th sample in the table is assigned to two categories 
although it fits category 5 better than category 6. 

Unlike KNN, it is also possible that with SIMCA an outcome is that a sample does not 
match any category. For example, sample 10 in the above table fit none of the classes in 
the training class.

Misclassifications
Many of the previously mentioned objects address data suitability. These objects help us 
determine if the samples in a category are homogeneous and representative and if the 
variables are useful and descriptive. However, the classification bottom line is how well 
did we do? Particularly during training, we would like to evaluate the SIMCA model’s 
self-consistency. Pirouette provides a Misclassification object (much like the KNN ob-
ject of the same name discussed in “Misclassifications and Total Misses” on page 6-8) to 
summarize classification success by category. From the Best column of the Class Pre-
dicted object, a cross-tabulation is constructed, such as that shown in the following fig-
ure.

Figure 6.22
SIMCA

Misclassifications

If samples in the training set categories are reasonably homogeneous, no misclassifica-
tions should occur (as in the table above). In theory, outliers in the training set may not 
properly self-predict. Either these samples would be classified into the wrong category 
and a non-zero value would occur off the table’s diagonal, or they would not match any 
category, in which case a non-zero value would be placed in the last column, titled No 
match. In practice, however, most training set samples properly self-predict for one ob-
vious reason: the sample’s data was used to model the category.

Class Projections
The Class Projections object provides a visual evaluation of the degree of class separa-
tion. To create this object, a 3 factor PCA is performed on the entire training set during 
the SIMCA processing. The coordinates of a bounding ellipse (based on the standard de-
viations of the scores in each PC direction) for each category are projected into this 3 fac-
tor PCA space; they form a confidence interval for the distribution of the category. The 
figure below shows the score points for four categories and the corresponding confidence 
intervals displayed as ellipses. Rotation of the Class Projections plot can reveal category 
6–24



6 Classification Methods: Soft Independent Modeling of Class Analogy
overlap as well as training set samples lying beyond the confidence boundary of the cor-
responding class model.

Figure 6.23
A Class Projections

plot from a SIMCA
analysis

OPTIMIZING THE MODEL
Model optimization in SIMCA differs markedly from KNN in that each training class in 
SIMCA is considered independently. Determining the optimal number of factors in each 
class and finding outliers is accomplished in SIMCA in a manner analogous to that de-
scribed for PCA (save for the fact that cross-validation is not currently implemented in 
Pirouette’s SIMCA algorithm).

Admittedly, quite a few objects are calculated during SIMCA model creation and exam-
ining them all can be tedious when the number of classes is large. Each can inform your 
choice of the optimal model parameters. Viewing the scores in rotatable 3D will help you 
decide if classes are suitably homogeneous. Make sure to scan the Outlier Diagnostics 
plot for unusual samples.

Variable selection may be necessary to improve class separation or to reduce the com-
plexity of individual classes. For this, examine the modeling power and the discrimina-
tion power, as well as the loadings for each category. Even if these parameters appear 
satisfactory, you should also verify that there is class separability by looking at the inter-
class residuals and distances. If the distances between classes are small, you may find it 
difficult to obtain reliable classifications.

Remember the iterative nature of model building. For each class, as you change the num-
ber of factors via a line plot of the Factor Select object, you must track the impact on ob-
jects linked to the number of factors: Outlier Diagnostics and Modeling Power for that 
class and all interclass objects. If you change transforms or preprocessing options or ex-

PC1

PC2

PC3
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clude samples or variables, optimization must be repeated after re-executing the SIMCA 
algorithm.

In cases where only two of many classes are insufficiently distinguished, you may want 
to create an exclusion set containing only those two classes and treat them separately, 
eliminating variables where no difference exists. Then you can use one SIMCA model to 
make the easier distinctions and a second model to focus only on the difficult ones. This 
process is sometimes called hierarchical classification and is an approach for which the 
automation software InStep is well-suited.

MAKING A SIMCA PREDICTION
Running SIMCA triggers the creation of a model. You can confirm this by going to Pro-
cess/Predict after running either algorithm and noting the entry under Model. Making 
predictions requires a model and a target, that is, a data set with an x block containing 
one or more samples whose classes will be predicted. This data set’s x block must have 
the same number of independent variables as the data set from which the model was cre-
ated and cannot contain any excluded independent variables. The prediction target may 
or may not contain dependent and class variables.

The following figure shows the Configure Prediction dialog box. To get model informa-
tion, highlight its entry as illustrated in the figure. To configure a prediction, highlight a 
model and an exclusion set and click on Add. You can configure more than one predic-
tion at a time by highlighting a different model name or exclusion set then clicking Add. 
Predictions are made when you click Run. Some prediction objects summarize results for 
all classes; others are stored in a folder for each training set category.

Figure 6.24
Configure Prediction

dialog box
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For each training set class, Scores, X Reconstructed, and X Residuals are computed for 
each test sample and stored in a separate folder. All are discussed in “Making a PCA Pre-
diction” on page 5-43.

Class Probabilities
During prediction, a probability can be computed from the (augmented) sample residual 
for each test sample fitted to each class as described in “Outlier Diagnostics” on page 5-
38. The values are accumulated in the Class Probabilities object. By default, the informa-
tion in this object is presented in a multiplot view (like the Class Distances object) where 
pairwise combinations of classes form the subplot axes. A zoomed subplot is shown in 
the following figure.

Figure 6.25
Class Probabilities

subplot

These Class Probabilities characterize a sample’s quality of fit to the various SIMCA 
classes much like the Class Distances discussed on page 6-22: samples laying in the NW 
quadrant are members of the x-axis category, etc.

Misclassifications
The prediction Misclassifications object differs from the modeling analog in one respect. 
The table contains an additional line--Unmodeled--which shows the predicted category 
for those samples not assigned an a priori category value or assigned to a category not 
present in the model. An example result follows.

Note: Misclassifications are computed only if there is a Class variable in the prediction set 
which has the same name as the Active Class used during the SIMCA modeling phase. 
The name match is case sensitive.
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Figure 6.26
SIMCA

Misclassifications
during prediction

In the example above three samples did not achieve the expected classification (those in 
the No match column), although the majority of samples were properly classified. Bor-
rowing the terminology of clinical analysis, the classification outcomes can be further 
summarized in four ways:
• True positive (tp) - a sample known to be a member of category A classifies correctly 

into category A

• False negative (fn) - a sample known to be a member of category A classifies incor-
rectly into a different category or into no model category

• False positive (fp) - a sample known not to be a member of category A classifies in-
correctly into category A

• True negative (tn) - a sample known not to be a member of category A classifies cor-
rectly into another category or into no model category

The above table contains 8 true positive samples of category 2, one false negative and 3 
false positives. The remaining 63 samples are true negatives of category 2.

For purposes of comparing results between different classification models, these out-
comes can be characterized by their sensitivity and selectivity. For a given category:

[6.17]

Thus, sensitivity can be calculated from the values found in the misclassification matrix 
as the ratio of the number of samples in the cell where the categories for predicted and 
actual columns are the same divided by the number of samples in the row for that cate-
gory.

[6.18]

Similarly, selectivity can be found as the ratio of the total number of samples minus the 
number of samples in the category minus the number of unmodeled samples predicted 
into the category, divided by the total number of samples minus the samples in the cate-
gory.

We can extend this evaluation to the entire prediction set. The sensitivity is the ratio of 
the sum of the diagonal values in the Actual vs. Predicted portion of the table to the sum 
of all of the Actual rows. In the table above, the sensitivity would be 60/63 or 95%. The 
selectivity simplifies to the ratio of the Unmodeled-No match value to the sum of the Un-
modeled row: 6/12 or 50%.

The user must determine whether the consequence of a false negative (lower sensitivity) 
outweighs the consequence of a false positive (lower selectivity).

Sensitivity tp
tp fn+
----------------=

Selectivity tn
tn fp+
----------------=
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Calibration Transfer

Classification models, when saved to a file, are portable and can be shared with other Pir-
ouette users. However, differences among instruments may be great enough to make pre-
dictions using shared models unreliable. Transfer of calibration approaches may allow 
such models to be used with little or no loss of reliability. For more background on this 
topic, see “Calibration Transfer” in Chapter 4.

To transfer a calibration during classification prediction, you must use a model derived 
from an algorithm configured to Enable Calibration Transfer. The check box for this op-
tion appears in Figure 6.2, on page 6-5. Along with the profiles (that is, the x block) to 
be adjusted, you must also supply two class variables and choose the calibration transfer 
type. The contents of and constraints on these two variables are described below.

REQUIRED CLASS VARIABLES
The Adjust Mask class variable determines which prediction samples are candidate trans-
fer samples; it must contain only 1s and 0s and must contain at least one 1. Samples 
flagged with a 0 are excluded from calibration transfer calculations; samples flagged 
with a 1 may be involved, depending on other conditions. The name of the Adjust Mask 
variable is specified in Prediction Preferences dialog (see “Prediction” on page 10-19).

For a calibration to be transferred, it is mandatory that the prediction set include a class 
variable with exactly the same name as in the model. For each candidate transfer sample, 
the value of this class variable is examined and compared to the class values in the model 
of the training set. If a value is found which is not in the model, the calibration cannot be 
transferred and the prediction aborts. Neglecting to supply transfer samples from all 
model categories compromises the efficacy of the transfer as does supplying too few 
samples per category. The number of transfer samples per category actually used for the 
transfer is determined by the category with the smallest number of transfer samples, 
whether it be in the model or in the prediction set.

Note: If it is not possible to supply transfer samples for every model category, the Additive and 
Multiplicative adjust types are usually preferable to Direct and Piecewise.

CALIBRATION TRANSFER OPTIONS
The last three items in the Classification group of the Prediction Preferences dialog (see 
below) apply to transfer of calibration. There you specify the name of the Adjust Mask 
Variable, the Adjust Type and Window Size, the latter applicable only if Piecewise is 
chosen as the transfer type. For background on the different types of transfer, see “Cali-
bration Transfer” on page 4-33.
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Figure 6.27
Classification

Prediction
Parameters

X TRANSFERRED
When a calibration is transferred, the results include an additional object, which is named 
X Transferred, with the transfer type parameter and number of samples per category ap-
pended. For example, the figure below shows that Direct transfer was applied with 2 
transfer samples per category. This object contains the x block of the prediction samples 
after adjustment. You should always compare this object to the original transformed pre-
diction profiles. Similarly, it is wise to compare the predicted categories with and without 
adjustment.

Figure 6.28
X Transferred object
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he ultimate purpose of most multivariate analyses is to develop a model to predict 
a property of interest. That property may be categorical or continuous. Developing 
models for category prediction is the subject of Chapter 6. Continuous properties 

are modeled and predicted by regression methods, the subject of this chapter.

Regression establishes a functional relationship between some quantitative sample prop-
erty, the dependent variable, and one or more independent variables. In analytical chem-
istry, the independent variables are often chromatographic or spectroscopic 
measurements. It would be advantageous to substitute these measurements for bulk prop-
erty or concentration determinations which are problematic due to either high cost or the 
lack of a specific sensor. Examples of a bulk property are the flash point of a fuel and the 
strength of a polymer. Indirectly determined concentrations include moisture, fat, fiber 
and protein in food and oxygenates in gasoline. Compared to univariate regression, mul-
tivariate methods offer improved precision, more sophisticated outlier detection and in 
the case of factor based algorithms, the possibility of compensating for interferences.

Many users of regression are content to create descriptive models. They apply the tech-
niques discussed in this chapter but stop when a model has been created. By describing 
the correlations among the variables, these models can point out phenomena which give 
rise to the structure in the data. In these scenarios, there is no future; the data in hand de-
fine the problem completely. If more data become available later, they are either added 
to the existing pool of data or are modeled separately.

We, however, have a more ambitious purpose: predictive models. In this case, modeling 
dependent variables in terms of independent variables is only the first step. Later, the 
model is combined with independent variable measurements on new samples (sometimes 
called unknowns) to predict their dependent variable properties. The data used to create 
a predictive model are called the training set and the model-building phase is often re-
ferred to as calibration. The term calibration model emphasizes that prediction, not de-
scription, is the ultimate objective.

T
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7 Regression Methods: Factor Based Regression
After a model is created but before it is used, it should be validated. Validation, which 
establishes the reliability of a predictive model, entails making predictions on samples 
with already known dependent variable settings. A model may describe the training set 
very well but yield poor predictions when applied to future samples. Thus, validation is 
as important as the model-building process itself because it tells us how well a model 
should perform.

Suppose we wish to predict the concentrations of components A and B in unknowns also 
containing components C, D and E but we wish to avoid quantifying C, D and E. The two 
factor based algorithms discussed below, PLS and PCR, can address this not uncommon 
analytical scenario. At first glance this claim may seem fantastic to chemists familiar 
with the concept of an interference. However, because factor based methods characterize 
variance, they produce linear combinations of independent variables which account for 
variation associated with unquantified components even without explicit information 
about dependent variable settings for those components. Of course, they work only if all 
components in the unknowns are present in the training set in amounts spanning the rang-
es encountered in the unknowns. To elaborate, the training set must include samples con-
taining compounds A, B, C, D and E; the amounts of A and B must be known; and the 
concentrations over which all components vary must span the range encountered in fu-
ture unknowns. These methods, which are described as both implicit and inverse, are said 
to produce soft models. 

The obvious power of factor based methods is mitigated by two demands which imme-
diately catch the attention of those new to them. First, a relatively large number of train-
ing set samples is required to adequately discern the variance patterns. Second, the user 
must decide how many factors are necessary to model not only the properties to be pre-
dicted but also the interferences. Pirouette's two factor based algorithms are discussed in 
“Factor Based Regression” on page 7-2.

Some users, particularly spectroscopists, may live in (or occasionally visit) a simpler 
world: applications where all sources of variation are known and quantified. In this case, 
a so-called classical method can be employed which is said to produce hard models. See 
“Classical Least Squares” on page 7-44 for a discussion of Pirouette's implementation of 
CLS.

Factor Based Regression

Pirouette implements two popular multivariate regression methods, both of which are 
factor-based: Principal Component Regression (PCR) and Partial Least Squares (PLS) 
regression. While both produce a lower dimension representation of the independent 
variable block, they differ in how this representation is computed. The ramifications of 
these differences are not always apparent so a user is often left wondering if one is better. 
For many data sets, neither method significantly outperforms the other in producing re-
liable models, which is after all the bottom line. In fact, the results are often indistinguish-
able at first glance except that PLS may produce a model with one less factor than PCR. 
Moreover, in Pirouette, PLS executes faster than PCR. These two facts lead many to pre-
fer PLS over PCR. This said, it should also be noted that PCR is better understood from 
a statistical point of view.

Pirouette’s PLS algorithm is often referred to as PLS1; it does not perform a PLS2-type 
of decomposition in which multiple dependent variables are processed as a unit. For de-
tails on the theory and application of PLS and PCR, refer to Martens and Næs1.
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MATHEMATICAL BACKGROUND
Before describing how to apply PLS and PCR, we supply a brief theoretical background 
for those new to factor-based regression, The references at the end of this chapter address 
the topics below in much greater depth. As in Chapter 5 and Chapter 6, we consider the 
case where m measurements are made on n samples. For each sample, the m independent 
variables are arranged in a row vector. For our purposes, these row vectors are assembled 
into a matrix containing n rows and m columns called the X (or independent variable) 
block. The Y (or dependent variable) block contains at least one column vector having n 
elements. Several dependent variables can be associated with an X block but each is pro-
cessed separately. In the following discussion, i is a sample index, j is a dependent vari-
able index and k is a factor index. The maximum number of latent (or abstract) factors, 
g, is equal to the minimum of n and m.

Multilinear Regression
To predict some value y from a suite of other measurements xj (where j = 1, 2,..., m), we 
must first establish a relationship between the two sets of measurements. If we assume 
that y is linearly related to x and write:

[7.1]

then the beta terms (which are called regression coefficients) specify the relationship we 
seek, and f contains the error in describing this relationship. For a set of n samples (i = 
1,2,... n):

[7.2]

In matrix format (with mean-centering to remove the first beta term), this becomes:

[7.3]

The error vector, f, is included because it is unlikely that y can be expressed exactly in 
terms of the X block; fi is the y residual for the ith sample. The determination of the vec-
tor of regression coefficients allows future y values to be predicted from future X block 
measurements; thus, finding the beta vector is described as creating a regression model. 
The regression coefficients satisfy a least squares criterion: they minimize of the error 
sum of squares defined as:

[7.4]

where the T superscript indicates the transpose of the matrix. Thus, 

[7.5]

To meet this condition:

[7.6]

To make a prediction of y from a new x, we substitute equation 7.6 into equation 7.3:

[7.7]

When there are more samples than variables, this approach is referred to as Multiple Lin-
ear Regression (MLR) or Inverse Least Squares (ILS). Note that it requires inversion of 

y β0 β1x1 β2x2 ... βmxm f+ + + + +=

yi β0 β1xi1 β2xi2 ... βmxim fi+ + + + +=

y Xβ f+=

fTf y Xβ–( )T y Xβ–( )=

y Xβ– 0=

β XTX( )
1–
XTy=

ynew xnewβ xnew XTX( ) 1– XTy= =
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7 Regression Methods: Factor Based Regression
an m by m matrix. If the columns of X are linearly dependent or if they are highly cor-
related, the matrix is singular or almost singular. What this means practically is that the 
computed regression coefficients are relatively imprecise. As you can imagine, predic-
tions based on a model with poorly-determined regression coefficients are likewise im-
precise. This issue is avoided by using a factor based method (see below) in which the 
variables are by definition uncorrelated.

Many analytical instruments produce highly correlated measurements. For example, in 
many spectroscopic techniques, signal changes at one wavelength are often accompanied 
by similar changes at other wavelengths. Correlated variables are good from the stand-
point of redundancy; acting in some sense like replicates. However, violation of the MLR 
assumption that each x variable is independent can cause the algorithm to fail when ap-
plied to data sets containing highly correlated variables. If MLR is the only technique un-
der consideration, the user must find and eliminate correlated variables. Thus, the 
emphasis in MLR is often on variable selection, deciding which subset of the original in-
dependent variables data set to retain and which to discard.

Factor based methods are an alternative to MLR. As discussed in “Principal Component 
Analysis” in Chapter 5, they find linear combinations of the independent variables which 
account for variation in the data set. These linear combinations, which are sometimes 
called loadings or latent variables, are the factors which give the approach its name. They 
can be thought of as new variables which have the desirable property of being uncorrelat-
ed. There are many factor based techniques which differ only in how they define a factor, 
that is, how the linear combinations of the original variables are found. An advantage to 
these techniques is that no data have to be discarded. Disadvantages include difficulty in 
interpreting the factors and the need to decide how many factors to compute.

Principal Component Regression
In PCR the independent variable block (i.e., the X block) is first decomposed as in PCA. 
However, in Pirouette PCR employs the Singular Value Decomposition (SVD)2 rather 
than the NIPALS algorithm (“NIPALS” on page 5-28). In the SVD, the matrix X is de-
composed into three matrices:

[7.8]

The U matrix holds the eigenvectors of the row space, the V matrix holds eigenvectors 
of the column space, and S is a diagonal matrix whose diagonal elements are the singular 
values. A singular value is the square root of the corresponding eigenvalue of the product 
of XTX. There are as many singular values as samples or independent variables, which-
ever is smaller. One advantage of such a decomposition is that a potentially troublesome 
inversion is avoided. Note that SVD results are interconvertible with PCA results:

[7.9]

[7.10]

Replacing X by its decomposition, we can then proceed with the regression. First, we 
substitute equation 7.8 into equation 7.3:

[7.11]

The solution then becomes:

X USVT=

L V≡

T US≡

y USVT( )β f+=
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[7.12]

where this ß term is the regression vector. Predicting y from a new x follows from:

[7.13]

A notable aspect of PCR is that the SVD decomposition of X depends only on X. The Y 
block has no influence on U, S or V, only on  β.

Partial Least Squares Regression
Partial Least Squares (PLS) regression shares many PCR/PCA characteristics and vocab-
ulary. PLS (also known as Projection to Latent Structures) finds factors analogous to 
PCA’s principal components. However, because these factors contain information about 
X and Y block correlations, they often yield more parsimonious and, in some situations, 
more reliable models than PCR.

The original descriptions of PLS were based on the NIPALS algorithm3. Later, PLS was 
shown to be equivalent to a matrix bidiagonalization4, which is how Pirouette imple-
ments PLS. The interested reader is referred to the Manne paper for details. The bidiag-
onalization matrices are analogous to those derived from the SVD. To minimize 
confusion which might result from PCR/PLS analogs sharing symbols, an underscore 
will denote PLS matrices:

[7.14]

[7.15]

[7.16]

 and  are not identical to U and V, which means that PLS scores/loadings are dif-
ferent from PCR scores/loadings, although they are often quite similar. One detail worth 
noting is the orthogonality (or the lack thereof) of the analogs: both loadings are orthog-
onal as is T but the NIPALS scores from PLS are not. R is not a diagonal matrix as S is 
in PCR; rather, it is right bidiagonal, i.e., the elements on the first diagonal above the 
main diagonal may be nonzero. The diagonal elements of the R matrix are not equivalent 
to SVD singular values. A pseudo-eigenvalue vector can, however, be calculated from 
the PLS scores:

[7.17]

Note: The term pseudo-eigenvalue is employed to avoid confusion with the term eigenvalue, 
which has a specific mathematical meaning. PLS pseudo-eigenvalues are similar to the 
actual eigenvalues determined in PCR in that they quantify the amount of variation ac-
counted for by a factor. In the case of PCR, variation means X block variation; in PLS, 
variation also includes Y block effects. Having made this distinction, we omit the pseudo 
modifier when referring to this PLS result below.

The PLS regression step is carried out exactly as in PCR, except that equation 7.14 is sub-
stituted into equation 7.3:

[7.18]

β VS 1– UTy=

ynew xnewβ xnewVS 1– UTy= =

X URVT=

L V≡

T UR≡

U V

λ diag TTT( )=

β VR 1– UTy=
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Predicting y from a new x follows from:

[7.19]

NIPALS Scores and Loadings

The vigilant user will note that the scores and loadings computed by the bidiagonaliza-
tion algorithm differ slightly from those produced by the NIPALS algorithm. In Pirou-
ette, the PLS NIPALS results are called NIPALS Scores and NIPALS Loadings. They 
are provided only for comparison purposes. A NIPALS user who wants to check results 
against Pirouette should examine the NIPALS analogs. NIPALS was developed years 
before bidiagonalization, so when “PLS scores” and “PLS loadings” are mentioned in the 
literature, the NIPALS analogs are usually meant. The bidiagonalization loadings are 
usually called weight loadings by NIPALS users. Of course, when PLS regression is per-
formed, a consistent set of scores and loadings must be chosen. NIPALS scores are or-
thogonal while NIPALS loadings are not, just the converse of bidiagonalization. More 
importantly, the computation of the X residuals will also differ with the two approaches 
(see note on page 7-11).

Note: There is an alternative formulation of the PLS algorithm given in the Martens book1 (on 
page 123)which they refer to as the non-orthogonalized PLSR algorithm. This alternative 
produces scores and loadings identical to those in the bidiagonalization approach.

Trimmed Matrices
If X is fully decomposed into its g factors, the regression vectors of equation 7.12 and 
equation 7.18 are identical to that of equation 7.6. However, if only the first k columns 
of U (or U), S (or R) and V (or V) are kept, a k factor approximation of X is produced. 
This process, often called reducing the dimensionality of the data set, is discussed in 
“Modeling with PCA” on page 5-18 in terms of trimmed scores and loadings matrices, 
Tk and Lk, respectively. (Refer to equation 7.9 and equation 7.10 for the relationship be-
tween PCR scores/loadings matrices and the SVD decomposition; refer to equation 7.15 
and equation 7.16 for the relationship between PLS scores/loadings matrices and the bid-
iagonalization decomposition.) Replacing the original X matrix with a lower dimension 
approximation is the central idea of factor based regression. By taking this step, a signif-
icant advantage is achieved: the resulting regression coefficients no longer suffer from 
the large relative uncertainties sometimes associated with MLR coefficients. Of course, 
there is a price: the user must set k which then determines the regression coefficients and 
all of its derived quantities.

Estimating the Optimal Number of Factors
Dealing with unvalidated regression models is presented in “Estimating the Number of 
Factors in Unvalidated Models” in Chapter 5. However, a different approach is taken 
when cross-validation is specified.

Validation-Based Criteria

We typically create models in order to make predictions on future data. If we retain an 
insufficient number of factors, future predictions are unreliable because important infor-
mation is missing from the model. On the other hand, if the model contains too many fac-
tors, future predictions are also misleading because random variation particular to the 
training set has been built into the model. This implies that model size might be inferred 

ynew xnewβ xnewVR 1– UTy= =
7–6



7 Regression Methods: Factor Based Regression
from stopping criteria based on predictive ability. Pirouette makes such an inference 
when cross-validation is applied during PLS or PCR. We get an idea of how well a re-
gression model performs by using it to make predictions on samples for which we al-
ready know “true” values for the dependent variables. Thus, for a validation sample xv, 
we make the following prediction, based on our k factor regression vector :

[7.20]

and generate the prediction residual:

[7.21]

where yv is the “true” value for the dependent variable of the validation sample. To keep 
the notation simple, hatted symbols (e.g., ) will indicate a k factor estimate of a quan-
tity.

For a set of nv validation samples, a Prediction Residual Error Sum of Squares can be 
calculated for the y block:

[7.22]

Related to the PRESS is the Standard Error of Prediction (SEP, also called the root mean 
squared error of prediction or RMSEP), which takes into account the number of samples 
and has the same units as the y variable:

[7.23]

The most naïve version of validation predicts on the training set samples. This type of 
standard error is termed a Standard Error of Calibration (SEC). The SEC must be correct-
ed for the number of factors k in the model:

[7.24]

Of course, the SEC is a tainted measure of future model performance since the regression 
vector was found by minimizing the PRESS: compare equation 7.4 and equation 7.22. 
Only if all future samples were exactly like the training set, would the SEC be an useful 
measure of model reliability. For future samples which are similar, but not identical, to 
the training set, the SEC is too optimistic, implying smaller prediction errors than will be 
observed. Moreover, the SEC often decreases steadily with increasing number of factors, 
which limits its utility as a stopping criterion.

If, however, a model is validated with samples not included in the modeling process, this 
SEP often shows a different structure from the SEC. A classical SEP is illustrated in 
Figure 7.1; the optimal number of model factors is indicated by the SEP minimum. Note 
that when too many or too few factors are retained in the model, the classical SEP in-
creases.

βk

ŷv xvβk=

f̂v yv ŷv–=

ŷv
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Figure 7.1
A classical SEV plot

A separate data set strictly for validation is not always available. A compromise can be 
achieved via an internal validation approach, such as Cross Validation. Samples from the 
training set are temporarily left out and a model created from those remaining. From this 
model, a prediction of the dependent variable of the left-out samples is made and the y 
residuals recorded. The left-out samples are then returned to the training set, more are ex-
cluded, a new model made, and new predictions and residuals generated. This process is 
repeated until every sample has been left out once. A PRESS calculated from the accu-
mulated residuals is then converted to a corresponding Standard Error of Cross-Valida-
tion (SECV). The SECV, whose denominator is not corrected for the model size, is 
typically larger than the SEC. It often shows a structure like a classical SEP except that 
it tends to be somewhat flatter. The next figure compares SEC and SECV.

Figure 7.2
SEC (lower trace)
and SEV (upper)

Note: Pirouette labels both Standard Error of Cross-Validation plots and Standard Error of 
Step-Validation plots as SEV. The term SECV is used in these discussions to be more 
specific and to be consistent with other publications.

The SECV can be used to indicate the optimal number of factors for a regression model 
so long as the curve exhibits a classical structure. It is a simple matter to find the mini-
mum in a plot of SECV versus number of factors. However, this minimum may not be 
significantly different from that of a model with 1 fewer component. Figure 7.3 shows a 
case where 9 factors are extracted but the 8 factor model is not deemed statistically dif-
ferent from one containing 9 factors.
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Figure 7.3
SEV plot with a flat

minimum

An F test can determine if two PRESS values are significantly different.5–6. Note that we 
need only compare those models having fewer factors than the minimum PRESS model. 
For the typical case of more variables than samples,

[7.25]

with Fk compared against tabulated values using k and (n-k) degrees of freedom and a 
probability level of 95% (set internally in Pirouette). If there is no significant difference, 
we choose the more parsimonious model, i.e., the one with fewer factors. When cross-
validation is performed in Pirouette, the number of optimal factors is based on such an F 
test. Like the eigenvalue-based estimate, it is not carved in stone—you may override it.

Note: If X is mean-centered or autoscaled and the number of samples is less than the number 
of independent variables, all occurrences of the term n-k become n-k-1.

The SEP estimates the precision of future predictions. When you have completed the 
model building phase (including validation), you must decide if the SEP is small enough 
to justify using the model. Remember that models are built to replace one set of measure-
ments with another. Suppose the precision of the reference technique (the one you wish 
to replace) is significantly better than your model’s SEP. Can you tolerate this loss of pre-
cision? If so, proceed to use the model. If not, put the model aside and consider several 
possibilities. Perhaps you have not sufficiently optimized the model. Perhaps a change in 
preprocessing, the application of different transforms, or the exclusion of some variables 
would decrease the SEP to an acceptable value. On the other hand, the quality of the mod-
el data may be insufficient. Perhaps you need greater chromatographic/spectroscopic res-
olution or more samples. Perhaps the hypothesis that these x measurements can replace 
these y measurements is just wrong.

Jaggedness

It is wise not to rely on a single diagnostic to determine the optimal number of factors. 
Many chemometricians recommend looking at the loadings and the regression vector as 
well. In particular, you can often tell by the characteristics of either of these objects 
whether there are two many factors in a model: when an individual loading vector or the 
regression vector starts to appear noisy or jagged is an indication that the model is overfit. 
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A metric that characterizes jaggedness attempts to quantify the relevance of the noise 
compared to the overall signal. This measure is developed on the regression vector from 
either a simple calibration or from a cross-validation8. Interpretation of the optimal num-
ber of factors based on jaggedness is much like that when using the SEV: find a minimum 
in the curve. An example jaggedness plot for a cross-validation is shown below.

Figure 7.4
A jaggedness plot

Finding Outliers
Outliers can distort an estimate of the optimal number of factors. If a sample has a unique 
pattern of variation, an extra factor may be required to fit it! Thus, outliers must be elim-
inated from the training set before the optimal number of factors can be properly estimat-
ed. When no cross-validation is specified, the approach to finding outliers in PCR and 
PLS is quite similar to that taken in PCA. Below are remarks pertinent to computations 
made when cross-validation is turned on and descriptions of some outlier diagnostics 
specific to regression algorithms.

Cross-validated results: Y values, Sample Residuals and Scores

Traditionally, the only result computed for the left-out sample(s) is the predicted y value. 
In Pirouette, however, the PLS and PCR X residuals and scores are also cross-validated, 
which improves the reliability of outlier detection during both the model building and 
prediction phases. This improvement can be understood by recalling that the basic ratio-
nale for cross-validation is to calculate certain sample results using a model from which 
that sample was excluded. Scores of the left-out sample(s) are stored after each pass 
during cross-validation and figure in the computation of the associated X residuals. Not 
surprisingly, these (cross-validated) X residuals may be larger than those computed when 
all samples are included in the model. The resulting (cross-validated) model residual 
variance bears the same relationship to the unvalidated model residual as the SECV to 
the SEC, that is, it is the preferred estimate.

Note: Even though the validated X residuals are computed for each factor during cross-valida-
tion, they are not available for display after the algorithm completes due to the storage 
requirements. Similarly, the validated Scores are not shown. One consequence of this 
is that a manual calculation of the Mahalanobis distance from the values shown in the 
Scores object will not produce the values shown in the Outlier Diagnostics object.
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7 Regression Methods: Factor Based Regression
During the modeling phase, the validated Mahalanobis Distance, Studentized Residual 
and Probability values will differ from the unvalidated versions. In some cases the dif-
ference will enhance the detectability of an unusual sample. During prediction a cross-
validated regression model will use the cross-validated model residual. Thus, when sam-
ples are predicted using the cross-validated model, they may be detected as normal in-
stead of being flagged as unusual when compared to a too small, unvalidated model 
residual.

Note: Although the regression vectors for the two PLS flavors (bidiagonalization and NIPALS) 
will be identical, the X Residuals may differ. The discrepancy arises when the scores and 
loadings are used to produce an estimate of the original X. The last off-diagonal in the 
trimmed R matrix (see equation 7.14) is included in the computation in the NIPALS for-
mulation but is not in bidiagonalization7. This can influence outlier determinations.

Leverage

Influential or high-leverage samples are of particular interest when looking for outliers. 
If a sample’s profile differs greatly from the average training set profile, it will have a 
great influence on the model, drawing the model closer to its location in factor space. A 
sample’s influence is quantified by its leverage, h. For the ith sample,

[7.26]

This quantity represents a sample’s distance to the centroid of the training set9; it is sim-
ilar to the Mahalanobis distance discussed in “Mahalanobis Distance” on page 5-25. As 
model size grows, leverage increases, until hi = 1 when k = g, i.e., all samples have equal 
influence over the model. However, when k is less than the maximum, a rule-of-thumb 
allows us to distinguish unusually influential samples:

[7.27]

Samples with leverages greatly exceeding hcrit should be examined closely. Keep in 
mind, however, that influential samples are not necessarily outliers. If a valid sample lies 
a large distance from the center of the training set because it is has an extreme value of 
the dependent variable, it contributes important information to the model.

Studentized Residuals

It is natural to examine Y residuals when looking for outliers. However, a sample’s raw 
y residual is misleading due to the effect of leverage. If a sample’s y value is extreme, it 
has a greater influence on the model than a sample close to . The extreme sample 
“pulls” the model toward it, decreasing the difference between the observed value of y 
and its fitted value. In contrast, a sample lying close to , having little or no leverage, 
cannot influence the model so its residual tends to be larger. The Studentized residual 
takes leverage into account, thus giving a fairer picture of differences among residuals. 
It is derived from the root mean squared residual for the training set10:

[7.28]

The Studentized residual, ri is then:
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[7.29]

Because it is assumed that ri is normally distributed, a t test can determine whether a sam-
ple’s Studentized residual is “too large”. In Pirouette, we compute a value for rcrit at a 
95% probability level (set internally), based on the n training set samples.

Predicting in PCR/PLS
Predictions are made in PCR/PLS by multiplying the x block of a new sample as shown 
in equation 7.20 using the k factor regression vector found during model optimization to 
produce an estimate of y. It is also helpful to know if the new sample differs significantly 
from the training set. This decision is based mainly on the magnitude of the x residuals 
and scores when the new sample is projected into the model factor space: samples sig-
nificantly different will have large residuals and scores. Two other previously mentioned 
quantities, Mahalanobis distance and Leverage, have prediction analogs. The former is 
described in “Mahalanobis Distance in Prediction” on page 5-31. The latter is defined in 
equation 7.26.

Prediction Confidence Limits

After prediction we might also like to know the level of uncertainty in the predicted prop-
erty or concentration. If we include cross validation during calibration or if we run a pre-
diction on a data set containing known Y values, the resulting SECV or SEP gives an idea 
of the overall expected error level. However, this value is a constant and will not give a 
meaningful measure of the uncertainty for individual samples.

Instead, we can compute a sample-specific confidence limit11 based on the model param-
eters and on h, the sample’s leverage (see “Leverage” on page 7-11).

[7.30]

where the t is from Student’s distribution based on the prediction probability setting (see 
“Prediction” on page 10-19) and the degrees of freedom in the model–the number of sam-
ples reduced by the number of model factors, and the SEC is the standard error calibra-
tion (see page 7-7).

ORTHOGONAL SIGNAL CORRECTION
Although factor based regression methods are very good at isolating relevant information 
in a data matrix within just a few factors, the irrelevant information--that which does not 
contribute to the correlation with the dependent variable--may still be confounding. Sub-
sequent regression models may not be as robust and their interpretation may be confus-
ing.

The goal of the calibration is to segregate that portion of the X block that is correlated to 
the Y variable from the portion that is not correlated. Thus, orthogonal signal correction 
(OSC) was developed to remove components in the X block that are orthogonal to the Y 
block before performing the regression. The OSC-corrected X block should then produce 
models which are more parsimonious and/or result in lower prediction errors.

In Pirouette, the method of direct OSC12 is offered as an enhancement to PLS and PCR. 

ri
fi
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7 Regression Methods: Factor Based Regression
Mathematical Background of DOSC
The OSC method uses several projections to segregate correlated and uncorrelated infor-
mation. First is a projection of y onto X:

[7.31]

where the dagger superscript indicates the pseudoinverse. The X matrix is then projected 
onto this  in a similar way:

[7.32]

After deflation, that portion of X which is orthogonal to y remains:

[7.33]

This matrix can be decomposed into scores T and loadings P: 

[7.34]

The scores are then trimmed to the number of orthogonal components to be removed 
from X. Orthogonal weights can be obtained from a direct multiplication of the inverse 
of Xoy and the scores. However, it has been found12 that the slightly inexact generalized 
inverse works better than the pseudoinverse, and this is designated by X–1. 

[7.35]

From W, the orthogonal scores can be computed,

[7.36]

and the corresponding orthogonal loadings.

[7.37]

Finally, the orthogonalized X matrix results from removing the orthogonal signal from 
X.

[7.38]

It is this matrix Xosc that is substituted for the normal X matrix in the subsequent PLS or 
PCR analysis.

Using OSC with PLS/PCR
As many as three OSC components can be specified in the Run Configure dialog. 

Figure 7.5
Setting the number

of OSC components

ŷ XX†y=

ŷ
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7 Regression Methods: Factor Based Regression
Sufficient information is stored in a Pirouette model to allow the removal of the same 
OSC components during prediction.

RUNNING PCR/PLS
The options associated with these two factor based techniques are described in “PCR and 
PLS Options” on page 16-24. When the PCR or PLS algorithm executes, many computed 
objects are created and displayed. The objects computed during factor-based regression 
can help you find sample outliers, choose the optimal number of factors, and make deci-
sions about excluding variables. Each is described below along with ideas about how to 
examine them.

In addition to the computed objects, information necessary to make predictions for each 
dependent variable included in the training set is stored in memory as pieces of a regres-
sion model. A model can be used as soon as it has been created, or it can be stored sepa-
rately from the training set data and reloaded later to make predictions on future samples. 
A Pirouette regression model is more than just a regression vector based on k factors. It 
also contains information about which variables were excluded and what transforms/pre-
processing options were chosen so that future samples are treated in the same way as the 
training samples. Model building is an iterative process. You will seldom run a regres-
sion algorithm just once and immediately start making predictions. Instead you will 
spend much of your time optimizing your model, that is, finding the “best” set of sam-
ples, variables and configuration parameters.

As mentioned previously, PCR and PLS produce analogous results. Two objects are as-
sociated with PLS only, the NIPALS scores and loadings discussed in “NIPALS Scores 
and Loadings” on page 7-6. As shown in Figure 7.6, each dependent variable has its own 
set of objects.

Different objects default to different views. You can change an object view with the var-
ious View buttons. Many objects are matrices whose component vectors can be accessed 
via the Axes Selector button. You should experiment freely with different object views 
and arrangements. Particularly informative views and arrangements are captured and de-
scribed in the figures which accompany the following discussion.
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7 Regression Methods: Factor Based Regression
Figure 7.6
Object Manager

listing of PLS results

Factor Select
The Factor Select object holds measures of the amount of variation captured by each fac-
tor extracted during PCR/PLS regression and standard error calculations.

The first three columns are derived from the eigenvalues. The first column, labeled vari-
ance, holds the eigenvalues. Percent variance and cumulative percent variance are sup-
plied also. PCR eigenvalues decrease monotonically. This is a consequence of the PCA 
decomposition: each successive factor accounts for a smaller amount of variation than 
the previous one. In fortunate cases, the decrease in eigenvalues is precipitous and the 
boundary between relevant and irrelevant factors is obvious. A gradual dropoff with no 
clear break, as seen in Figure 7.7, makes it difficult to perceive any boundary.
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Figure 7.7
Eigenvalues plot

with gradual
decrease

As the first few PLS factors are extracted, the eigenvalues may decrease. However, later 
PLS eigenvalues often increase as shown in Figure 7.8. This behavior occurs because the 
PLS algorithm extracts factors in order of decreasing correlation between the X block /
Y variable correlation. Thus, PLS eigenvalues are not helpful in determining the optimal 
number of factors.

Figure 7.8
PLS eigenvalues plot

Factor Select also contains: (1) RMSEC which is in the units of the measurement, (2) 
Press Cal, the PRESS based on the training set, (3) r Cal, the linear correlation coefficient 
relating the predicted and measured values of the dependent variable, and (4) Jag Cal, the 
Jaggedness calculation for the calibration. If validation is specified, the object also con-
tains the analogous validation quantities: r Val, Press Val, and SEV. Without validation, 
the Variance (i.e., the eigenvalues) trace is shown initially; with validation, SEV is 
shown initially. The SEC, SEV and PRESS quantities are defined in “Validation-Based 
Criteria” on page 7-6.

Regardless of which trace or combination of traces is plotted, a diamond is always avail-
able on one curve, indicating Pirouette’s choice of the “optimal” number of model fac-
tors. For an explanation of how Pirouette arrives at this number for validated models, see 
“Validation-Based Criteria” on page 7-6. For unvalidated models, the approach is out-
lined in “Estimating the Number of Factors in Unvalidated Models” on page 5-21. 
Change the number of factors by clicking above the desired x axis value. Many regres-
sion objects are a function of this setting; changing the position of the diamond marker 
triggers a recalculation of these so-called linked objects. Part of model optimization con-
sists of examining factor dependent objects while changing the diamond position.
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7 Regression Methods: Factor Based Regression
Scores
PCR/PLS score plots show data set homogeneity and draw attention to unusual samples 
or groupings in the data; see “Scores” on page 5-35. In an ideal training set used for re-
gression modeling, the scores plot contains a cloud of points with no clustering and no 
sparse regions. Clustering in the scores suggests either inhomogeneous sampling or a 
need for more than one regression model. In Figure 7.9 an inhomogeneous data set is 
shown; two groups can be identified.

Figure 7.9
Score

inhomogeneity

As mentioned previously, scores are computed differently for PLS and PCR. Because 
PCR starts with a PCA decomposition on the X block, PCR and PCA scores are identical 
although some small discrepancies may arise from algorithm differences (SVD for PCR 
versus NIPALS for PCA). Because PCR scores are derived strictly from the X block, 
they do not vary with the y variable. PLS scores, however, are different for each y since 
Y block variation plays a part in the PLS decomposition. See Figure 7.10 for a compari-
son of PCR and PLS scores.

Note: Because PLS scores vary with dependent variable, you must examine the PLS scores 
object associated with each dependent variable. The scores for one dependent variable 
may look homogeneous while another may have obvious sample groupings.
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7 Regression Methods: Factor Based Regression
Figure 7.10
Comparing PCR and

PLS scores

Loadings
Loadings reveal how the measured variables combine to form the factor axes; see “Load-
ings” on page 5-36 and in Figure 5.21 for more details. A loadings plot for spectroscopy 
data is shown in Figure 7.11.
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Figure 7.11
Loadings plots:

(a) for PCR;
(b) for PLS

Comparing a line plot of the loadings and the original data helps us see what data features 
are being modeled by each factor. This may tell us something about what phenomena are 
driving the model. Such a comparison is shown below where features apparent in the 
loadings plot have been highlighted. Note that features in the loadings may not necessar-
ily correlate to peaks in the spectra.
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7 Regression Methods: Factor Based Regression
Figure 7.12
Comparing loadings

to original data
showing important

features

When deciding on the optimal number of factors to retain in a model, consider excluding 
factors which have noisy loadings. For spectroscopic data, smooth spectra should give 
rise to smooth loadings as long as non-random variation is being modeled.

Y Fit
The Y Fit object holds the results of predicting on the training set samples. With no val-
idation, Y Fit consists of three vectors: (1) the measured y value, Measured Y, which is 
merely a copy of the dependent variable; (2) the predicted y value, Pred Cal; and (3) the 
y residual, Res Cal. With validation, Pred Val and Res Val, the validation analogs of Pred 
Cal and Res Cal, are included. The default view of Y Fit is a 2D plot of Pred Cal (if no 
validation) or Pred Val (if cross or step validation) vs. Measured Y. The next set of fig-
ures shows both cases. The number of model factors is displayed in the lower right corner 
of each plot.
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7 Regression Methods: Factor Based Regression
Figure 7.13
Y Fit default view (a)

without validation (b)
with validation

When two Y Fit vectors are plotted against each other in a 2D view, appropriate reference 
lines are also displayed. Plots of a residual vector contain horizontal or vertical zero ref-
erence lines; plots with only predicted or measured Y values have a diagonal reference 
line of slope one, as in the previous figure.

Plotting Pred Cal or Pred Val against Measured Y gives a sense of the respective descrip-
tive and predictive model quality. If the model perfectly describes the relationship be-
tween the X block and Y variable, all sample points fall on the diagonal. However, when 
the optimal number of factors is less than the maximum allowed, sample points scatter 
around the reference line.

A plot of either Res Cal or Res Val against Measured Y (or sample #) can be used to de-
tect trends in the residuals. When inspecting these plots, keep in mind the usual assump-
tions about residuals: they should be randomly distributed, have constant variance and 
should not correlate with Measured Y or sample #. If there is evidence of heteroscedas-
ticity (non-constant variance), the assumption that the dependent variable is a linear func-
tion of the independent variables may not be warranted. Figure 7.14 shows a case in 
which the errors do not appear to be a function of sample number.
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Figure 7.14
Validation residuals

as a function of
Sample

Outlier Diagnostics
The Outlier Diagnostics object consists of Leverage (see page 7-11), Studentized Resid-
uals (see page 7-11), Mahalanobis distance, F-Ratio and Probabilities. These last two 
quantities are discussed in “Mahalanobis Distance” on page 5-25 and “Probability” on 
page 5-25, respectively. The default view of this object, Leverage vs. Studentized Resid-
ual, is shown in Figure 7.15.

Figure 7.15
Studentized
Residual vs.

Leverage

Note: If cross-validation was performed, this object contains validated quantities. Thus, the 
Mahalanobis distance is based on left-out scores and the residuals derived computa-
tions are based on left-out X residuals.

As its name implies, the object attempts to identify outliers. The number of factors in the 
model appears in the lower right corner and approximate threshold lines are supplied. Re-
member that the thresholds are based on a 95% confidence level so 5% of the population 
is expected to exceed the cutoff value. Not surprisingly, then, in large data sets, many 
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7 Regression Methods: Factor Based Regression
samples lie beyond the threshold. Consider eliminating samples which exceed both 
thresholds or samples which greatly exceed one threshold, then re-run the regression al-
gorithm. If high leverage samples are associated with extreme y values, they may not be 
problematic, but are merely located at the edge of the calibration range. When you have 
an approximate idea of model size, check the Outlier Diagnostics for samples which 
greatly exceed the residual threshold for one size but are within it when an additional fac-
tor is extracted. This could indicate that the additional factor is modeling those samples 
only. Finally, examine the X Residuals of suspect samples, looking for regions of bad fit. 
This may help you understand in what way they are unlike other training set samples.

An example of a very high leverage sample is shown below; the spectrum is unusual but 
its associated Y value is not extreme. Such an unusual data point will have a large influ-
ence on the regression vector.

Figure 7.16
Sample with high

leverage, two views

Figure 7.17 shows an example of a sample (std7a) with a high Studentized residual, but 
normal leverage. The predicted Y value is quite different from the Measured Y although 
the spectrum looks reasonable.
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7 Regression Methods: Factor Based Regression
Figure 7.17
Sample with High

Studentized
Residual; two views

Regression Vector
The regression vector can be thought of as a weighted sum of the loadings included in 
the model. An example is shown in Figure 7.18. A line plot of this object reveals which 
independent variables are important in modeling the dependent variable. Variables with 
very small coefficients do not contribute significantly to a prediction. This information 
might guide you in eliminating variables.
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Figure 7.18
Regression Vector

Viewing a line plot of the regression vector as the number of factors changes can be quite 
instructive. When the number of factors is small and each additional factor accounts for 
significant variation, the vector’s shape changes dramatically with number of factors. Of-
ten a point is reached where the changes are much less striking and appear random, sig-
naling that noise is being modeled.

A 2D plot of the regression vector provides a graphical means of excluding variables. See 
“Correlation Spectrum” on page 7-26 for a description of how do make exclusions using 
this method.

X Reconstructed
This object is described in “X Reconstructed” on page 5-37.

Figure 7.19
X Reconstructed

example
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X Residuals
The X Residuals object is described in more detail in “X Residuals” on page 5-38. By 
default, a line plot of all sample residual vectors is displayed. Viewing this plot as the 
number of factors is changed may reveal poorly fitting samples/variables. The following 
figure shows a case where several samples have large residuals around 870 nm for a four 
factor model.

Figure 7.20
X Residuals example

Correlation Spectrum
When a y variable is available, as is always the case in regression problems, it is possible 
to compute its correlation to each variable in the x block. The Correlation Spectrum is 
the resulting vector of r values. This object is computed for each y in the training set 
whenever PLS or PCR is run. A plot of the Correlation Spectrum is shown below.

Figure 7.21
Correlation

Spectrum
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7 Regression Methods: Factor Based Regression
An interesting function of this plot is to facilitate graphical exclusions of poorly correlat-
ing x variables. To accomplish this, click on the Pointer tool and click-drag a rubber box 
around points with small r values. They become selected (i.e., highlighted) when the 
mouse button is released. Then choose the Create Exclude entry from the Edit menu to 
generate a subset which does not contain these variables.

NIPALS Scores
This object is computed only for PLS. The NIPALS algorithm produces PLS scores 
which differ slightly from those computed by the bidiagonalization algorithm as dis-
cussed in “NIPALS Scores and Loadings” on page 7-6. The following graphic shows the 
scores for the first three factors for both algorithms.

Figure 7.22
Comparison of

scores:
(a) from

bidiagonalization
procedure;

(b) from NIPALS
procedure

NIPALS Loadings
The object is computed only for PLS. The NIPALS algorithm produces PLS loadings 
which differ slightly from those computed by the bidiagonalization algorithm as dis-
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cussed in “NIPALS Scores and Loadings” on page 7-6. The graphic below shows a com-
parison of the first four loadings which is analogous to Figure 7.22.

Figure 7.23
Comparison of

loadings:
(a) from

bidiagonalization
procedure;

(b) from NIPALS
procedure

X Preprocessed
As mentioned in “X Preprocessed” on page 5-32, it is often useful to view the X block 
data after preprocessing. This object is available in PLS, PCR, and PLS-DA.

OSC Results
Because orthogonal signal correction is performed on the pre-treated preprocessed X 
block, it is useful to compare before and after correction. The following figure is from 
the data in Figure 7.17 and show the profiles after mean-centering.
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Figure 7.24
Preprocessed data

These data retain information in the preprocessed X block which are not correlated to the 
Y block. After removing 1 OSC component, the majority of the uncorrelated information 
is removed. Figure 7.25 shows the effects of the orthogonalization. The remaining infor-
mation should produce a more reliable calibration.

Figure 7.25
Orthogonalized data

After running PLS or PCR with OSC enabled, you should look at the regression vector 
to see how this change effects interpretation of the model. For example, the following fig-
ure contrasts the regression vectors for the data in Figure 7.24.
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Figure 7.26
Regression vectors

without and with
OSC

In this example, the optimal number of factors was reduced by only 1, but the error (based 
on the RSECV) was improved by about 20% (see next figure). 

Figure 7.27
Standard errors

without OSC (top)
and with OSC

(bottom)
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Depending on the data set, removal of more than 1 OSC component may be worthwhile. 
Thus, varying this parameter becomes another set of investigations for model optimiza-
tion.

MAKING A PCR/PLS PREDICTION
Running PCR/PLS triggers the creation of a model. You can confirm this by going to 
Process/Predict after running either algorithm and noting the entry under Model. Making 
predictions requires a model and a target, that is, a data set with an X block containing 
one or more samples whose y values will be predicted. This data set’s X block must have 
the same number of independent variables as the data set from which the model was cre-
ated and cannot contain any excluded independent variables. The prediction target may 
or may not contain dependent and class variables.

Figure 7.28 shows the Configure Prediction dialog box. To get model information, high-
light its entry as illustrated in the figure. To configure a prediction, highlight a model and 
an exclusion set and click on Add. You can configure more than one prediction at a time 
by highlighting a different model name or exclusion set then clicking Add. Predictions 
are made when you click Run. Some prediction objects summarize results across depen-
dent variables; others are stored in a folder with the dependent variable name.

Figure 7.28
Configure Prediction

dialog box

Error Analysis
If the prediction target contains data for any dependent variables having the same name 
as the dependent variables in the training set, the Error Analysis object is created. For 
each matching y name, it contains the number of model factors, the PRESS, RMSEP, 
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SEP, the bias between these two measures, plus three quantities which characterize a plot 
of predicted value against reference value: correlation coefficient, slope and intercept.

If the SEP in this object and the training set SEV are comparable, it is likely that training 
set samples and prediction target samples are drawn from the same population and that 
your model contains an appropriate number of factors. If the model produces biased pre-
dictions, this will be reflected in significant deviations from an intercept of zero and a 
slope of one. Figure 7.29 shows the Error object for a prediction target containing five 
dependent variables.

Figure 7.29
PLS Error Analysis

Y Predictions
The predicted values for each dependent variable for each sample appear here in table 
format. Figure 7.30 which provides a side-by-side view of PLS and PCR predictions. 
Note that the number of model factors for each Y is embedded in the column title.

Figure 7.30
Comparing PLS and

PCR Y Predictions

A 2D plot of Y Predictions shows threshold lines which indicate bounds on the training 
set reference values for each Y (see Figure 7.31). This feature draws attention to instanc-
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es of model extrapolation. Predictions lying inside the training set range are interpolated 
values while those lying outside the range are extrapolated. Model extrapolation is to be 
avoided.

Figure 7.31
Scatter plot of Y

Predictions showing
Y range in model

X Reconstructed
This object is described in “X Reconstructed” on page 5-37.

Figure 7.32
An X Reconstructed

object

X Residuals
The X residuals object produced during prediction is identical to the modeling object of 
the same name described on page 7-26. The figure shown below contains a line plot of 
the X Residuals from a small prediction set. Note that one of the samples (the highlighted 
blue trace) fits the model rather poorly, that is, it has large X residuals. Not surprisingly, 
this sample will present large outlier diagnostics (see “PLS Prediction Outlier Diagnos-
tics” on page 7-36).
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Figure 7.33
PLS Prediction X

Residuals

When attempting to determine the quality of any prediction, it is wise to compare the pre-
diction X residuals to those associated with the training set to get an idea of a reasonable 
magnitude. Large X residuals during prediction imply that a sample does not belong to 
the same population as the training set. Variables having the largest residuals can indicate 
regions where the poorly predicting sample differs most from the training set samples. 
For example, in spectroscopic applications, if interferences are present in the prediction 
targets but absent from the training set, prediction X residuals will be large at variables 
where the interference makes a significant contribution to the signal. For more, see “Con-
tributions” on page 5-40).

Y Fit
If the prediction target contains data for any dependent variables having the same name 
as the dependent variables in the training set, the Y Fit object is analogous to the object 
described in “Y Fit” on page 7-20. By default, when this object is dropped, it shows a 
plot of measured vs. predicted.
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7 Regression Methods: Factor Based Regression
Figure 7.34
Prediction Y Fit

object

However, this object also contains the prediction confidence limits; see “Prediction Con-
fidence Limits” on page 7-12. Switch to the table view to see all columns.

Figure 7.35
Prediction Y Fit

values and
confidence limits

If the prediction target does not contain dependent variable data related to the model, the 
Y Fit object contains only the predicted values and confidence limits. In this situation, 
the default view shows these values in a line plot in which the predicted values and their 
error bounds are overlayed.
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7 Regression Methods: Factor Based Regression
Figure 7.36
Prediction Y Fit error

bounds

Outlier Diagnostics
To identify unknowns which differ significantly from the training set samples, an Outlier 
Diagnostic object is produced during prediction. It contains the Leverage, and Mahala-
nobis distance and Probability. The first quantity is described in “Leverage” on page 7-
11 while the last two are discussed in “Mahalanobis Distance in Prediction” on page 5-
31 and “Probability” on page 5-25, respectively.

The following figure shows the Outlier diagnostics corresponding to the data in 
Figure 7.33 above. The sample with the large X Residual, also highlighted below, is in-
deed an outlier sample, as indicated by large probability and leverage values.

Figure 7.37
PLS Prediction

Outlier Diagnostics

OSC Results
If OSC is enabled, when prediction is run, the data are orthogonalized before the algo-
rithm; refer to equation 7.36 - equation 7.38. The orthogonalized X block is computed 
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7 Regression Methods: Factor Based Regression
and should be surveyed to look for important features particularly if they differ from the 
original X block.

Figure 7.38
Orthogonalized
prediction data

The prediction quality can also be evaluated by contrasting the Error Analysis object with 
and without OSC.

Figure 7.39
Error analysis of PLS

prediction without
and with OSC

Note that in this case, the errors were hardly reduced, but the bias, reflected in the slope 
and intercept, were much improved.
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7 Regression Methods: PLS for Classification
PLS for Classification

Although originally designed as a regression algorithm that correlated information in the 
X block to dependent variables, PLS has recently demonstrated some success in pattern 
recognition applications. In these scenarios, the Y variable is binary, with ones for sam-
ples that belong to the category and zeroes for non members. The approach is called PLS-
DA to evoke its similarity to Discriminant Analysis. Pirouette’s implementation auto-
matically generates an implicit Y block from an existing class variable. The restrictions 
on this class variable are discussed in “Using Class Variables in Algorithms” on page 13-
19. PLS-DA is based on the same mathematics as PLS. However, additional objects are 
computed, during both modeling and prediction; these are described in the next sections. 

RUNNING PLS-DA
The parameters available when running PLS-DA are described in “PLS-DA Options” on 
page 16-27. Optimizing a PLS-DA model is similar to PLS and PCR. If you can afford 
to do so, run cross validation and look at the SEV results to help choose the optimal num-
ber of factors. Investigate the loadings and the regression vector to optimize the factor 
selection setting and to see if there are any regions in the X block that are not useful in 
the model. Look for unusual samples in the Outlier Diagnostic object and, if found, use 
the X Residuals and Contributions to understand what makes the samples different.

Class Predicted
PLS-DA classifications, like those in SIMCA, can result in a sample matching no model 
category, a single model category, or more than one model category. Accordingly the 
Class Predicted object embodies these three outcomes.

Figure 7.40
PLS-DA Class

Predicted object

Like SIMCA, PLS-DA uses a special category name to designate no match: 0. The figure 
above shows that at least one sample was not classified into any category. It is possible, 
though rare, that during PLS-DA calibration a sample could be categorized into more 
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7 Regression Methods: PLS for Classification
than one category. Tie-breaking criteria for this situation are discussed later; see “Clas-
sification Tie-breaker” on page 7-43.

Displaying the results as a plot can be helpful, particularly when the class variable used 
for the model is activated.
• Convert from Table to 2D view

• With the Selector button, put Sample Index on the Y-axis

Figure 7.41
PLS-DA Class
Predicted plot

One sample does not match any model category while, based on color consistency, we 
can see that another sample appears to be predicted into an incorrect category.

Misclassifications
A summary of the classification success of the PLS-DA model is presented in the Mis-
classification object (sometimes called a Confusion Matrix). The predictions for each 
category are summed and placed in a table.

Figure 7.42
PLS-DA

Misclassifications

If all samples predict into their pre-defined categories, values along the matrix diagonal 
represent the size for each class. Non-zero off diagonal values indicate classification er-
rors. As shown in the previous figure, one sample did not match any model category, 
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7 Regression Methods: PLS for Classification
while another sample was predicted in to an incorrect category. Note also that the column 
labels show the number of factors in each class’ PLS model.

MAKING A PLS-DA PREDICTION
When ready to perform a PLS-DA prediction, use the same procedure as for PLS and 
PCR. 
• Choose Process > Predict (or press Ctrl-Y)

• Select the Exclusion Set(s) on which to predict

• Select the Model(s) to use

An example of this process was already shown (see Figure 7.28, on page 7-31). When 
the prediction is complete, open the appropriate folder in the Object Manager to see the 
results.

Y Predictions
The default view of the Y Predictions object is that of a table; it contains a column for 
every category in the training set.

Figure 7.43
Y Predictions table;

highlighted cells
indicate

classifications

Because PLS-DA’s implicit Y variables are set to one for the samples in the category and 
to zero otherwise, the predicted Y value should be close to one for samples truly belong-
ing to the class and close to zero if not. In the preceding figure, samples that are clearly 
members of categories 3, 4, and 5, respectively, are shaded to differentiate them from the 
other predicted values. When this object is viewed as a scatter plot, reference lines ap-
pear.
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7 Regression Methods: PLS for Classification
Figure 7.44
Y Predictions plot

In the PLS Y Predictions plot, the reference lines indicate the range of Y values in the 
model. In the case of PLS-DA, however, the reference lines indicate the decision criteri-
on for class membership: only samples with Y values greater than 0.5 are called category 
members. Thus, in the plot, the red samples are all above the membership criterion for 
CS2, that is, class 2 which is plotted on the X axis while the green samples fall above the 
decision criterion of class 3, on the Y axis.

A 2D scatter plot with sample index on the x axis shows this more clearly.

Figure 7.45
Y Predicted plot of

one category

Thus, the green samples are the only ones classified into category 3.

Class Predicted
When performing predictions, we have to consider another case not possible during PLS-
DA modeling: prediction samples might belong to categories not represented in the train-
ing set. The following figure is from another prediction in which some samples belong 
to training set categories but others do not.
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7 Regression Methods: PLS for Classification
Figure 7.46
Y Predicted plot with
unmodeled samples

Clearly, some of the samples have predicted values considerably larger than 0.5. Pirou-
ette uses the sample’s Probability value to qualify the result (see “Probability” on page 
7-48). Thus, any sample whose probability is greater than the Regression Probability set-
ting in the Prediction Preferences dialog (“Prediction” on page 16-43), will be considered 
not classified, even if it exceeds the Y prediction value of 0.5. In this way, spurious clas-
sifications are avoided.

Figure 7.47
Prediction

Probabilities plot

Not only were the unmodeled samples disqualified, as shown in the previous plot, but 
one sample of a modeled category is also disqualified. These results are summarized by 
the Class Predicted object which considers both the Y Predicted and Probability results 
in the final category decision.
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7 Regression Methods: PLS for Classification
Figure 7.48
Class Predicted

object in prediction

Classification Tie-breaker
As with SIMCA, it is also possible for a sample to be classified by PLS-DA into two (or 
more) categories. This can occur when categories are very similar with overlapping fac-
tor spaces. In this situation, Pirouette applies a tie-breaker to favor one category: the sam-
ple is considered to better fit that class with the Y prediction closest to 1.

Note: This is an updated decision from version 4.0 which used the lowest probability for the 
tie-breaker.

Misclassification Matrix
As in the SIMCA result, the Misclassification Matrix object for prediction contains an 
extra row to summarize the results for unmodeled objects.

Figure 7.49
PLS-DA prediction

Misclassification
Matrix

Several outcomes are demonstrated in this table. 
• No samples in class 2 were in the prediction set
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7 Regression Methods: Classical Least Squares
• Two samples in class 3 were not classified into any category

• Eight samples in the prediction set were not in categories represented in the training 
set

• And, none of the 8 unmodeled samples were classified

Note: The Misclassification Object will be computed only if there is a Class variable in the pre-
diction set which has the same name as the Active Class used during the PLS-DA mod-
eling phase. The name match is case sensitive. At least one sample must match a 
modeled category in order for the Misclassification object to be produced.

Classical Least Squares

Although CLS is not strictly limited to applications which follow Beer’s Law, it is most 
often mentioned in this context. For this reason the following discussion is developed in 
terms of Beer’s Law and parameters associated with quantitative spectrophotometry.

MATHEMATICAL BACKGROUND
Consider the case where p is the number of components (i.e., analytes) to be determined, 
n is the number of samples and m is the number of wavelengths at which absorbances are 
measured for each sample. X is the n by m matrix of absorbances of the samples, Y is the 
n by p matrix containing the concentration-pathlength product of the p components in the 
n samples, and K is a p by m matrix. Each row of K corresponds to the spectrum of one 
of the p analytes at unit concentration and unit pathlength. Each row of X is the spectrum 
of one of the n samples. Using these definitions, the matrix formulation of Beer’s Law is:

[7.39]

This relationship embodies the additivity of Beer’s Law. Any sample’s spectrum is as-
sumed to be the sum of the spectra of each of the p components in the sample. The ab-
sorbance spectrum due to any one of the p analytes is the product of its concentration and 
its pure component spectrum found in K.

Note: The extent to which Beer’s Law holds and the additivity assumption is met influences 
CLS model quality. Moreover, if a component is present in samples but its pure compo-
nent spectra is unavailable, CLS will perform poorly.

The composition of new samples (i.e., unknowns) can be determined immediately from 
their spectra and K. Designating the spectrum of a single new sample as xnew, equation 
7.39 can be rearranged to give a vector of estimated concentrations for this sample:

 [7.40]

where β is a matrix containing p column vectors, one for each component. The individ-
ual regression vectors are thus the columns of the pseudo-inverse of K, symbolized by 

:

 [7.41]

X YK=

ŷnew xnewβ xnewKT KKT( ) 1–= =

K†

β KT KKT( )
1– K†= =
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7 Regression Methods: Classical Least Squares
To account for non-zero spectral baselines, additional rows are added to K, the number 
and content determining the degree of polynomial baseline fit for new samples. When r 
rows are added containing the independent variable indices raised to the r-1 power, a 
baseline of order r-1 is fit to each sample spectrum. Thus, to fit a constant baseline to each 
sample, a row of ones is added. To fit a linear baseline, an additional row is added con-
taining 1, 2, 3,... m. Every row added to K produces a corresponding row in Y. In the case 
of a linear baseline, the extra rows in Y hold its intercept and slope.

Note: Failure to properly account for the baseline leads to poor quality predictions in CLS. This 
accounting takes place during the second inversion, when the pseudo-inverse of K is 
computed.

Direct and Indirect CLS
If the K matrix is already available, that is, the analytes have been specified and their pure 
component spectra taken from a library or measured by the analyst using pure analyte, 
the approach is called Direct CLS13. Its modeling (i.e., calibration) phase is trivial, re-
quiring no standards, only the computation of the pseudo-inverse of K. However, Direct 
CLS may produce poor results in the prediction phase due to deviations from Beer’s Law 
at high concentrations. A spectrum of neat analyte may differ significantly from the pure 
component spectrum of that analyte in dilute solution, where individual absorbers cannot 
“see” each other and can thus act independently. In concentrated solutions absorber-ab-
sorber interactions increase and influence the resulting spectrum. In other words, Beer’s 
Law is a limiting relation, followed most closely in dilute solution. Moreover, library 
spectra contain features which depend on the particulars of instrument used to acquire 
them: resolution, signal-to-noise ratio, detector, etc. For these reasons, Indirect CLS is 
emphasized in Pirouette. However, Direct CLS is possible; it requires supplying the p by 
p identity matrix as a Y block.

In Indirect CLS, pure component spectra are estimated from n training set samples which 
contain various amounts of the p components. Thus, an estimate of K is determined from 
Xts, the training set spectra, and Yts, training set concentration matrix:

[7.42]

To guarantee that the inverse of YTY exists, certain requirements on the number and 
composition of training set mixtures must be met. There must be as many independent 
standards as pure component spectra to be estimated. Moreover, special designs for Yk 
are necessary if samples have concentrations which sum to a constant value (e.g., 100% 
by weight); see Cornell14 for a thorough discussion of mixture designs. Of course, the 
composition of the training set samples should span the prediction concentration space.

To guarantee that the inverse of KKT exists, certain requirements on the number of in-
dependent variables must be met. There must be as many independent variables as the 
number of dependent variables to be estimated plus the baseline order plus one. Thus, to 
determine the concentration of one species with a linear baseline (of order = 1), data for 
at least three wavelengths must be available. 

Note: To simplify notation below, pure component spectra are represented by , not .

K̂ Yts
T Yts( ) 1– Yts

T Xts=

K K̂
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Thus, Indirect CLS consists of two matrix inversions. The first results in an estimate of 
K, the pure component spectra, and the second results in an estimate of Y, the concen-
trations of the unknowns. In both cases, it is possible to write expressions which quantify 
the uncertainty in these estimates. These expressions, giving the uncertainties in regres-
sion coefficients, follow from standard multiple linear regression theory15.

Uncertainty of Pure Component Spectra
The reconstructed mixture spectra are calculated from

[7.43]

The residual portion of the mixture spectra is then

[7.44]

The uncertainty in the estimate of pure spectra, ΔK, is a function of both Yts and Ets, the 
residuals from the mixture spectra used to estimate K:

 [7.45]

where Δkj is the jth column of ΔK, and the mean square about the regression, sj
2, is com-

puted for each variable as:

[7.46]

where ej is the jth column of Ets.

Uncertainty in the estimate of K is determined by two factors: the experimental design 
of the training set mixture compositions (over which the user has some control) and spec-
tral noise. Good experimental designs can minimize the magnitude of the elements of 
(YTY)-1. Poor designs include almost redundant samples (i.e., rows of Y which are close 
to being linear combinations) with an attendant increase in the magnitude of the elements 
of (YTY)-1. Obviously, as the magnitude of the random fluctuations in Xts increases due 
to more spectral noise, the magnitude of the elements of sj must also increase.

Statistical Prediction Error (SPE)
Uncertainty in the y estimate produced by equation 7.40 is given by:

 [7.47]

where snew
2 is the sample’s residual variance defined in equation 7.53 below based on 

enew. The uncertainty in a predicted y value is determined by two factors. First, the qual-
ity of the fit of the sample’s spectrum affects snew; samples which are indeed mixtures of 
only the p components in the training set will have small residual variances. Second, the 
degree of spectral overlap in the Pures influences the magnitude of the elements of K. As 
the overlap in the Pures increases, so does the diagonal of (KKT)-1. 

Cross Validation
The idea of cross-validation is discussed in “Model Validation” on page 5-19 where the 
emphasis is on choosing the number of factors for PCA, PLS, or PCR. In CLS, an anal-

X̂ ŶK XtsβK= =

Ets Xts X̂– Xts XtsβK–= =

Δkj diag Yts
T Yts( ) 1– sj

2( )
1 2⁄

=

sj
2 ej

Tej
n p–
------------=

Δyi diag KKT( )
1–

( )snew
2( )

1 2⁄
=
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ogous choice is the order of the baseline fit and the main motivation is to improve the 
estimates of model quality and make outliers easier to find. Cross-validation in CLS is 
quite speedy so you are encouraged to choose this option when running the algorithm. It 
differs slightly from that in PCA, PLS, and PCR. In addition to a vector of predicted con-
centrations generated for each left out sample, the X Residuals are also computed and 
stored. Thus, all quantities derived from the X Residuals differ from those produced 
when no validation is specified for a Run Configuration.     

Y Residuals
For any sample with a known concentration, the prediction residual for any y is:

[7.48]

where y is the “true” value for the dependent variable. For a set of n samples, a Prediction 
Residual Error Sum of Squares (or PRESS) can be calculated for the y variable under 
consideration:

[7.49]

Related to the PRESS is the Standard Error of Prediction (SEP), which takes into account 
the number of samples and has the same units as the y variable:

[7.50]

The most naive version of validation predicts on the training set samples. This type of 
SEP is termed a Standard Error of Calibration (SEC):

[7.51]

When cross-validation is specified, the quantity is symbolized by SEV to distinguish it 
from the SEP which is produced by predictions of true test samples.

Outlier Diagnostics
It is always desirable to remove unrepresentative training set samples before building a 
model. For CLS, Sample Residual, F ratio, Probability and Mahalanobis distance are cal-
culated to help pinpoint unusual samples.

Sample Residual

A sample’s residual variance follows directly from the residual matrix Ets. To make the 
notation less cumbersome, the subscript ts will be dropped. The ith row of E, a vector ei, 
is the difference between that sample’s original data and its estimate, :

[7.52]

A sample’s residual variance is then:

[7.53]

In Pirouette, the square root of sample residual variance is called the sample residual:

f̂ y ŷ–=

PRESS fTf=

SEP PRESS
n

------------------- 
  1 2⁄

=

SEC PRESS
n p–

------------------- 
  1 2⁄

=

x̂i

ei xi x̂i– xi xiβ–= =

ŝi
2 eiei

T

m p–
-------------=
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[7.54]

A total variance can be calculated for the whole training set:

[7.55]

F Ratio

If a particular sample residual is larger than s0, it is natural to wonder if the sample is an 
outlier, i.e., it might not belong to the same population as the other samples in the training 
set. An F test is used to decide if two variances differ significantly, the appropriate ratio 
being:

[7.56]

As Fi gets large, the likelihood increases that the sample is not drawn from the same pop-
ulation as the other training set samples.

If the left-hand side of equation 7.56 is set equal to a critical value extracted from an F 
table (based on 1 and n - p degrees of freedom and a user-specified probability), a critical 
sample residual can be determined by rearrangement:

[7.57]

This then becomes a threshold for deciding whether a sample residual is “too large”. If a 
sample residual exceeds scrit, that sample may be an outlier.

Probability

Another way to flag unusual samples is by determining the probability associated with 
the quantity in equation 7.56 assuming an F distribution with 1 and n - p degrees of free-
dom. As a sample’s probability approaches 1, the chance it is an outlier increases.

Mahalanobis Distance

For each sample and each dependent variable, a Mahalanobis distance is computed:

[7.58]

where S is the covariance matrix of , and  is the mean predicted y. Assuming that 
Mahalanobis distance is normally distributed, a critical value MDcrit can be determined 
from a chi squared distribution with p degrees of freedom. If a sample’s Mahalanobis dis-
tance exceeds MDcrit, that sample may be an outlier.

RUNNING CLS
The options associated this algorithm are shown in the figure below. When it executes, 
many objects are computed which can help you find sample outliers and make decisions 
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about excluding variables. Each is described below along with ideas about how to exam-
ine them.

Figure 7.50
CLS Options

In addition to the computed objects, information necessary to make predictions for each 
dependent variable included in the training set is stored in memory as pieces of a regres-
sion model. A model can be used as soon as it has been created or it can be stored sepa-
rately from the training set data and reloaded later to make predictions on future samples. 
A Pirouette CLS model is more than just a matrix of regression vectors. It also contains 
information about which variables were excluded and what transforms/preprocessing op-
tions were chosen so that future samples are treated in the same way. 

Model building is an iterative process. You will seldom run a regression algorithm just 
once and immediately start making predictions. Instead you will spend much of your 
time optimizing your model, that is, finding the “best” set of samples, variables and base-
line order.

Baseline Select
Each type of baseline is associated with an integer from 1 to 5 corresponding respectively 
to none, constant, linear, quadratic and cubic fit. The model error sum of squares (ESS), 
defined below, is computed for each baseline setting:

[7.59]

It is displayed on the y axis as a function of the five baseline integers on the x axis in the 
Baseline Select plot. Changing the diamond handle position triggers recomputation of all 
quantities dependent on the baseline fit. Plots of such quantities display in their lower 
right corner the integer corresponding to the current Baseline Select setting.

Errors
For each of the p components, the PRESS CAL and the SEC are computed. The correla-
tion coefficient rCal for the predicted y vs. known y is also displayed. Performing cross-
validation triggers computation of the validation analogs of these three quantities.
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Figure 7.51
CLS Errors

Pures
The estimates of the pure component spectra given by equation 7.42 are stored in the 
Pures object. 

Figure 7.52
CLS Pures

A line plot view of the Pures presents the amount of spectral overlap. Remember that 
highly overlapped spectra tend to produce poorer CLS models. You should examine the 
individual pures to confirm that each indeed resembles the spectrum of analyte. You may 
want to compare the estimated pures to library spectra of the analytes under investiga-
tion.

X Residuals
The X Residuals are the portion of the training set spectra not fit by the estimated Pures 
and the estimated Ys. Ideally, these residuals should have no structure but in practice, 
they often increase at wavelengths where the signal is large. When the magnitude of the 
residuals approaches a significant fraction of the signal being modeled, the model is in-
adequate.
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Figure 7.53
CLS X Residuals

Bounded Pure
Because the Pures are part of any subsequent prediction on new samples, errors in the 
Pures produce errors in predicted y values. The imprecision in the estimates of a Pure is 
given by equation 7.45. A sort of confidence interval can be formed around each Pure by 
multiplying the Uncertainty, a standard deviation, by a constant based on the Probability 
Threshold set in the Run Configure dialog. For example, a Probability Threshold of 0.95 
corresponds to a multiplier of 1.96. Thus, the lower bound is the Pure minus 1.96 times 
the Uncertainty and the upper bound, the Pure plus 1.96 times the Uncertainty.

Figure 7.54
CLS Bounded Pure

In the plot shown above, the bounds are practically superimposed on the Pure estimate 
itself, implying a very good fit. If the magnitude of the uncertainty is large compared to 
your estimate of the maximum allowed spectral noise, you may be able to decrease it by 
changing the experimental design of Y or by increasing the signal to noise ratio of the 
training set spectra. If the maximum magnitude of the uncertainty is on the order of the 
uncertainty in the instrument used to acquire the spectra, the design of the training set is 
acceptable. 
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7 Regression Methods: Classical Least Squares
Y Fit
For each component included in the training set, an object very similar to one of the same 
name computed during factor based regression is provided (see “Y Fit” on page 7-20). It 
differs only by including the SPE, described in “Statistical Prediction Error (SPE)” on 
page 7-46. 

Figure 7.55
CLS Y Fit

Recall that the SPE estimates the precision error in the predicted Ys. You should confirm 
that the SPE for each analyte is less than the maximum acceptable imprecision stipulated 
when the regression problem was defined. Training set samples with too large SPE val-
ues indicate an inadequate CLS model.

Outlier Diagnostics
This object contains the Sample Residual (defined by equation 7.54), Mahalanobis dis-
tance (defined by equation 7.58), F Ratio (defined by equation 7.56) and Probability for 
each training set sample. 

Figure 7.56
CLS Outlier
Diagnostics
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7 Regression Methods: Classical Least Squares
Approximate threshold lines are provided to flag unusual samples. Samples lying well 
beyond one or more thresholds are potential outliers. Exclude them and rebuild the mod-
el, then decide if their inclusion is detrimental.

X Residuals
The X Residuals are the portion of the training set spectra not fit by the estimated Pures 
and the estimated Ys. Ideally, these residuals should have no structure but in practice, 
they often increase at wavelengths where the signal is large. When the magnitude of the 
residuals approaches a significant fraction of the signal being modeled, this indicates that 
the model is inadequate.

Regression Vector
For each component, the regression vector is also supplied, such as in the example shown 
below.

Figure 7.57 CLS
Regression Vector

MAKING A CLS PREDICTION
Running CLS triggers the creation of a model. You can confirm this by going to Process/
Predict after running the algorithm and noting the entry under Model. Making predictions 
requires a model and a target, i.e., a data set with an X block containing one or more sam-
ples whose y values will be predicted. The target’s X block must contain the same num-
ber of independent variables as the data set from which the model was created and no 
independent variables may be excluded. The target may or may not contain dependent 
and class variables.

Figure 7.28 shows the Configure Prediction dialog box. To get model information, high-
light its entry as illustrated in that figure. To configure a prediction, highlight a model 
and an exclusion set and click on Add. You configure more than one prediction at a time 
by highlighting a different model name or exclusion set then clicking Add. Predictions 
are made when you click Run. The several objects available after CLS prediction is per-
formed are described below.
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7 Regression Methods: Classical Least Squares
Baseline Select
You can change the baseline type when predicting. This object contains the model error 
sum of squares and the standard errors for each Pure. If cross-validation was run, the SEV 
is shown, otherwise it’s the SEC.

Y Predictions
Predicted values for all Ys included in the model are stored in this object.

Figure 7.58
CLS Predictions

Error Analysis
This object is very similar to one of the same name computed for factor based regression, 
except that the number of model factors is replaced by the integer corresponding to the 
chosen baseline type. See “Error Analysis” on page 7-31 for a discussion of this object.

Figure 7.59
CLS Error Analysis

X Residuals
The X Residuals produced during prediction are interpreted in much the same way as 
those found during the calibration; see “X Residuals” on page 7-50.
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7 Regression Methods: Classical Least Squares
Figure 7.60
CLS Prediction X

Residuals

Outlier Diagnostics
The Outlier Diagnostics produced during prediction are interpreted in much the same 
way as those found during the calibration (see “Outlier Diagnostics” on page 7-36). An 
example of this object is shown below. 

Figure 7.61
CLS Prediction

Outlier Diagnostics

Y Fit
If the sample being predicted is accompanied by a known y value whose name corre-
sponds to a y value name in the training set, this object is identical to that produced during 
modeling; see “Y Fit” on page 7-52. If no known value of y is available (or if the y value 
name does not match), only the predicted Y and SPE are displayed.
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7 Regression Methods: Calibration Transfer
Figure 7.62
CLS Prediction Y Fit

Calibration Transfer

Regression models, when saved to a file, are portable and can be shared with other Pir-
ouette users. However, differences among instruments may be great enough to make pre-
dictions using shared models unreliable. Transfer of calibration approaches may allow 
such models to be used with little or no loss of reliability. For more background on this 
topic, see “Calibration Transfer” in Chapter 4.

To transfer a calibration during regression prediction, you must use a model derived from 
an algorithm configured to Enable Calibration Transfer. The check box for this option 
appears in Figure 16.27, on page 16-25. Along with the profiles (that is, the x block) to 
be adjusted, you must also supply a class variable and y variables and choose the calibra-
tion transfer type. The contents of and constraints on the variables are described below.

REQUIRED VARIABLES
The Adjust Mask class variable determines which prediction samples are candidate trans-
fer samples; it must contain only 1s and 0s and must contain at least one 1. Samples 
flagged with a 0 are excluded from calibration transfer calculations; samples flagged 
with a 1 may be involved in the calibration transfer calculations, depending on other con-
ditions. The name of the Adjust Mask variable is specified in Prediction Preferences di-
alog (see “Prediction” on page 10-19).

It is mandatory that the prediction set include a y block with exactly the same y variable 
names as in the model. If every y variable name in the model is not present in the predic-
tion set, a calibration cannot be transferred and the prediction aborts. If the y names do 
match, then for each candidate transfer sample, the values of each y variable are exam-
ined and compared to the model values. If these values do not match, again the prediction 
aborts.

To show which training set samples are stored in the model and thus indicate possible 
matching y settings, an object called Ranked Transfer Samples is computed whenever a 
regression algorithm is run with Enable Calibration Transfer checked. It lists the sample 
names in optimal order and their y block values. Ideally, as many transfer samples as pos-
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7 Regression Methods: Calibration Transfer
sible, starting from the top of the Ranked Transfer list, should be included in the predic-
tion set to assure good reliability in the calibration transfer.

Figure 7.63
Ranked Transfer
Samples for PLS

CALIBRATION TRANSFER OPTIONS
The last three items in the Regression group of the Prediction Preferences dialog shown 
below apply to calibration transfer. There you specify the name of the Mask Variable, the 
transfer type and Window Size, which is applicable only for Piecewise transfers. For 
background on the different types, see “Calibration Transfer” on page 4-33.

Figure 7.64
Regression
Prediction

Parameters

X TRANSFERRED
When calibration transfer is applied during regression prediction, the results include an 
additional object, whose name contains the transfer type and the number of transfer sam-
ples. For example, the figure below shows that a 5 point Piecewise transfer was applied 
using 4 transfer samples. This object contains the x block of the prediction samples after 
adjustment. You should always compare this object to the original transformed predic-
tion profiles. Similarly, it is wise to compare the predicted y values with and without cal-
ibration transfer.
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7 Regression Methods: Locally Weighted Regression
Figure 7.65
X Transferred

Locally Weighted Regression

Not all training sets for regression analysis are as homogeneous as we might want. There 
are several strategies for accommodating scenarios in which the distribution of samples 
varies. One of these is termed Locally Weighted Regression (LWR) in which a regres-
sion model is developed on a reduced set of samples selected by proximity, in data space, 
to the prediction sample.16 

LWR MODELING
Typically, in LWR the user decides how many samples to include in the local model 
(number of neighbors), how many factors would be optimal for that model, and whether 
the modeling is done with PLS or PCR. 

Figure 7.66
LWR options

Ideally, an optimization would be run to determine the first two parameters (contact In-
fometrix if this is a service you wish to contract), but may be unnecessary if one already 
has experience with the data. No further interaction with the algorithm is necessary; a 
model will be saved after LWR is run, and this model will contain all information neces-
sary to performa LWR prediction.

Note: A LWR model contains information for only a single Y variable. If your data contains 
more than one Y, include only the one you wish to model.

LWR PREDICTION
During a LWR prediction, a custom model is made for each prediction sample. First, the 
N samples (where N is defined in the modeling settings) nearest to the prediction sample, 
in data space, are found. Then a regression model (either PLS or PCR, from the settings) 
is created. Finally, a prediction is made on the sample from this model, using k factors, 
where k is also defined in the settings.
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7 Regression Methods: References
Results generated during a LWR prediction are similar to those for a regular regression 
prediction. These include:
• Y Predictions

• Error Analysis (only if the prediction data includes a Y variable with the same name, 
case sensitive, as that in the training data)

• Outlier Diagnostics

• YFit (if the Y name is absent, will only contain the predicted values and bounds)

• X Residuals

• X Reconstructed
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hemists often encounter mixtures whose composition may not be completely char-
acterized. These situations range from unresolved chromatographic peaks to res-
ervoir oil samples having contributions from more than one source rock. Mixture 

analysis is the general term for techniques applied to mathematically separate the com-
ponents in these types of mixtures.

Introduction

Consider a familiar problem scenario: a chromatographic peak is suspected to be impure, 
that is, it might contain two or more coeluting compounds. It would be desirable to de-
termine the number of coelutes and express the observed peak profile as a sum of contri-
butions from each. Chromatographers often refer to this approach as curve resolution or 
curve deconvolution.

Now consider a second problem scenario: environmental samples collected at various 
geographical locations are suspected to originate from one or more point sources. Again 
it would be desirable to determine the number of contributing sources and the relative 
amounts of each in the samples. This approach is often referred to as source apportion-
ment.

If samples are characterized by multiple measurements, both scenarios can be addressed 
using mixture analysis, which expresses the data matrix X as a product of two smaller 
matrices C and P. The matrix P contains the chemical profiles of the source materials. In 
the environmental scenario these source profiles are “signatures” which might implicate 
one of several possible polluters. In the chromatography scenario they might be used to 
identify the co-elutes via a spectral library search. The C matrix contains information 
about the composition of the mixtures, that is, the amount of each source present in a 
sample.

In curve deconvolution the multiple measurement requirement implies a multichannel 
detector, e.g., an FT-IR, UV-Vis diode array, or mass spectrometer. The samples (that is, 

C
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8 Mixture Analysis: Introduction
the rows of the X) consist of the detector signal vector acquired as the peak elutes after a 
single injection. Each sample (row) corresponds to a different elution time. Obviously, 
these samples are temporally ordered. A kinetics experiment with multichannel detection 
is another example of this type of mixture data. In these scenarios, appropriate results are 
generated simply by running a mixture analysis algorithm to produce C and P; no subse-
quent predictions are expected.

In source apportionment, the samples are usually discrete entities collected and analyzed 
to yield multiple measurements. These samples are unrelated by time and it may be de-
sirable to make predictions about future samples using the profiles determined during 
modeling.

The two scenarios also differ in pretreatment requirements. For curve deconvolution of, 
say, a fused peak in a GC/MS experiment, no transforms are generally needed. The signal 
intensities from which sample amounts are computed correspond to those in the original 
data. However, in source apportionment, normalizing the X data is usually necessary be-
cause of sampling effects like dilution. Area normalization is recommended, that is, 
transform with Divide By using the Sample 1-norm.

Note: The nomenclature can be confusing, mostly because it employs words having multiple 
meanings to chemists, e.g., samples. In this chapter the terms sources, pures, and com-
ponents are often interchanged. Because spectrometers are often the profile genera-
tors, the terms profile and spectra are also interchanged. The term shape is employed 
to describe any vector from the data matrix; it may be a row or column vector. 

A bilinear data matrix X having n rows and m columns can be expressed as a product of 
two matrices 

 [8.1]

where C is a matrix of source compositions (with n rows and q columns), P is a matrix 
of source profiles (with q rows and m columns), and E is a matrix of residuals. Each el-
ement in X can be found from

[8.2]

where i is the sample index, j is the variable index and k indexes the number of sources.

If a single compound is present, its measurement profile (spectrum, chromatogram, etc.) 
can be expressed as the vector p whose values p1, p2 ... pm are the intensities at each mea-
sured variable (wavelength, scan number, etc.). Each sample which is measured has a rel-
ative abundance ci, and the compositions of a collection of samples can be expressed in 
a vector c1, c2 ... cn.

As described in “Vectors and Matrices” in Chapter 17, the data matrix X of equation 8.1 
is composed of a series of row vectors, one for each sample. For a single component 
source, each row has the same profile, differing only in magnitude. If two different com-
ponents (q = 2) are present in the material analyzed, then C and P become matrices.

Because X can be decomposed into an infinite number of C and P pairs, the various mix-
ture analysis techniques differ in how C and P are computed. Two common mixture anal-
ysis approaches, Alternating Least Squares (ALS)1 and Self Modeling Curve Resolution 
(SMCR)2, are discussed below. SMCR is often called Multivariate Curve Resolution 
(MCR); we also adopt this terminology.

X CP E+=

xij cikpkj eij+=
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8 Mixture Analysis: Alternating Least Squares
Alternating Least Squares

The premise of ALS is fairly straightforward. Given an initial estimate of the source com-
position (or source profiles) that contribute to the data matrix, project that estimate onto 
the original data to produce an estimate of the profiles (or compositions). Alternate these 
projections and constrain C and P, until a pair is found whose product  is a sufficiently 
good approximation of the original data matrix X. In the discussion that follows, esti-
mates of quantities are shown without hats to simplify the notation.

MATHEMATICAL BACKGROUND

Number of sources

The number of source components in a mixture is related to the magnitude of variance. 
However, an estimation of the number of significant factors based on variance may over-
estimate the number of sources because some variation may come from background, 
baseline, noise sources, etc. It is recommended that the algorithm be repeated with the 
most reasonable choices for number of sources, choosing the number that yields the most 
meaningful solutions, that is, the best fitting compositions and profiles.

Initial estimates

Iterative techniques require initial estimates. An initial estimate of either the q purest pro-
files or the q purest composition vectors is required. If all but one of the sources lack a 
response at a given variable, that variable is a good choice for one of the initial compo-
sition vectors because it will be of a single, pure component. Similarly, if one sample is 
composed of only one source, that row would be a good initial profile estimate. 

Unfortunately, most real data sets contain neither unique variables nor samples, thus pure 
shapes cannot be identified. Instead Pirouette finds the q purest shapes in X, using an al-
gorithm based on “convexity”3. These shapes may be determined row-wise, producing 
estimates of profiles, or column-wise, estimating composition.

Least squares optimization

If the initial estimates are of the purest variables, that is, they estimate C, then P is esti-
mated from

[8.3]

where the + symbol indicates the pseudo inverse of a matrix. This profile estimate is con-
strained to yield  with ~ indicating a constrained matrix. A new estimate of C is ob-
tained from

[8.4]

This estimate of the amounts is constrained to yield . The product  is then com-
pared to X. If the approximation of X is not sufficiently good, the iterative process is re-
peated, starting with the constrained estimate of C.

ALS has a certain symmetry. If the initial estimates are of the purest samples (i.e., esti-
mating P), the regression in equation 8.4 occurs first, followed by the regression in equa-
tion 8.3.

X̂

P C+X=

P̃

C XP̃+=

C̃ C̃P̃
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8 Mixture Analysis: Alternating Least Squares
Constraints

Currently, Pirouette supports several types of constraints.

Non-negativity. The fractional amount of a source in a mixture must be 0 or greater. This 
allows an assumption of non-negativity in the composition matrix. Similarly, the inten-
sities produced by many measurement techniques cannot be negative, leading to non-
negativity constraints on values in the profiles. Exceptions to the latter include such mea-
surements as circular dichroism spectra and spectra which have been derivatized; in these 
cases, non-negativity should not be applied.

Unimodality. A single compound in chromatographic analysis elutes as a single peak; 
the peak is “unimodal”. A bimodal peak, that is, a peak with two maxima, would be con-
sidered to be composed of more than one compound. Thus, it is reasonable to constrain 
the compositions to be unimodal for curve deconvolution data.

Closure. For some experiments, all amounts are expected to sum to a constant; the 
amounts are said to be closed. Closure may be applied to either compositions or profiles. 
If neither is closed, the final profiles are automatically normalized as ALS processing 
completes.

RUNNING ALS
ALS offers a number of choices for constraints applied during the least squares optimi-
zation (see “ALS options” on page 16-26) as well as the maximum number of compo-
nents to consider. Keep in mind that constraining profiles to be non-negative conflicts 
with derivatives or with transforms that by their nature create some negative values. This 
is also true if mean-centering or autoscale are selected as pre-processing options because 
the result will have both positive and negative values.

Objects computed during ALS include the PCA Scores, Loadings and Eigenvalues (see 
“Running PCA” on page 5-31), plus several objects which aid in interpretation of the al-
gorithm results.

Source Select
The eigenvalues are shown in a plot called Source Select. A diamond “handle” on this 
plot indicates the initial number of sources estimated by Pirouette. Manipulating the po-
sition of the diamond triggers recalculation of amounts and profiles.
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8 Mixture Analysis: Alternating Least Squares
Figure 8.1
ALS Solution Select

object

The variance shown in this plot will often be concentrated in the first factor when no pre-
processing is performed before the algorithm. This can make deciding how many sources 
are present a challenge. Another metric which may help is a Lack of Fit computation 
based on the X Residuals.

Figure 8.2
ALS Lack of Fit

Source Amounts and Source Profiles
The final estimates of the pure source compositions and profiles depend on the Source 
Select setting.
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8 Mixture Analysis: Alternating Least Squares
Figure 8.3
ALS Source amounts

object

Figure 8.4
ALS Source profiles

object

To contrast the final solutions with the initial estimates, examine the corresponding ini-
tial amounts and initial profiles objects.
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8 Mixture Analysis: Alternating Least Squares
Figure 8.5
Initial Amounts

object

Figure 8.6
Initial Profiles object

The X Residuals reveals which portions of the original data remain unmodeled.
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8 Mixture Analysis: Alternating Least Squares
Figure 8.7
ALS X Residuals

object

The magnitude of the X Residuals relative to the original (or transformed) X data can be 
inferred by plotting the (transformed) X data and the X Residuals on the same scale. 
Choose Display > Limits to present a dialog (see “Magnifying Regions” on page 12-15) 
setting limits for the X and Y axes.

Figure 8.8
X Residuals scaled

to the same
magnitude as X
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8 Mixture Analysis: Alternating Least Squares
For source apportionment applications, it is customary to first normalize the samples to 
a common scale: Divide By, Sample 1-norm. In the following example, the data are a set 
of chromatographic profiles.

Figure 8.9
ALS source

apportioned profiles

Note: In the case of chromatographic data, it may also be necessary to align the chromato-
graphic profiles before normalizing (“Align” on page 4-22).

The mixture compositions in a source apportionment application may be best evaluated 
in tabular format, as shown below. 

Note: It may be useful to apply an additional transform after normalization—Multiply, by 100—
to put the source compositions on a percent rather than fractional scale.

Figure 8.10
ALS source
apportioned

amounts
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8 Mixture Analysis: Alternating Least Squares
A scatter plot can illustrate the relationships among the source contributions. The follow-
ing 3D scatter plot shows the results from the 3-source solution of Figure 8.10 superim-
posed over a triangle much like that of a phase diagram. The Source axes point in 
directions of increasing amounts of each source, and points in the interior of the triangu-
lar region represent mixtures of all 3 sources. 

Figure 8.11
ALS source amount

ternary diagram

Note that a 3-source solution can be depicted in a 2 dimensions like that shown above. A 
4-source solution could be illustrated in the 3-D plot available in Pirouette. More than 4 
sources cannot easily be shown graphically in a single plot. Instead, show these results 
in a multiplot.

MAKING AN ALS PREDICTION
To apply the source profiles computed from one data set to new data in order to predict 
amounts in those new samples,
• Load a new data set

• Load the ALS model

• Choose Process > Predict

In the Predict Configure dialog, click on the ALS model name to show information about 
the model in the adjacent info box.

Source 1 Source 2

Source 3
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8 Mixture Analysis: Alternating Least Squares
Figure 8.12
ALS Model info

After verifying that the model is appropriate, choose the subset on which to perform the 
prediction and click the Run button. When processing is completed, three computed ob-
jects are available for inspection.

Source Profiles

The Source Profiles used in an ALS prediction are those stored in the ALS model and are 
shown for completeness.

Source Amounts
An estimate of the predicted Amounts is computed by multiplying the Prediction target 
X data by the pseudo inverse of the modeling profiles P. The C constraints specified 
when the model was built are then applied to produce the values shown in the Source 
Amounts object.
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.13
ALS predicted

source amounts

The prediction X Residuals illustrate the errors in reconstructing the prediction data via 
equation 8.1. These residuals as a line plot reveal structure in regions less well modeled.

Figure 8.14
ALS prediction X

Residuals

It may be worthwhile scaling the X Residuals plot to the scale of the original data to ob-
serve the magnitude of the residuals in contrast with the magnitude of the raw data (see 
following figures).

Figure 8.15
Comparison of a) X
and b) prediction X

Residuals on the
same scale; the latter

are not detectable

Multivariate Curve Resolution

Understanding MCR is facilitated by a series of chromatographic examples, starting with 
single channel detection for a single component peak and progressing to two, three, and 
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8 Mixture Analysis: Multivariate Curve Resolution
finally many channel detection for two component peaks. Note that the current imple-
mentation of MCR in Pirouette is limited to computations of two sources.

As a pure compound elutes from a column, the response of a single channel detector is a 
function of the compound’s concentration in the mobile phase. Figure 8.16a shows the 
detector response as a function of time. Note, however, that the detector response itself, 
Figure 8.16b, is one-dimensional, that is, it rises and falls with concentration, but no oth-
er discriminating information is present other than the magnitude of the maximum re-
sponse. If the peak contains two overlapped compounds, the results are identical: 
univariate detection cannot discriminate between the two underlying components.

Figure 8.16
Single channel

detection
of a pure peak;

(a) chromatogram
(b) biplot of detector

responses; three
points are labeled

Now consider two channel detection with each compound responding to one channel on-
ly. If the two compounds are completely resolved, a chromatogram like that in 
Figure 8.17a is produced; Figure 8.17b shows the two detector responses plotted against 
each other. In this idealized scenario, having more than one detector channel reveals that 
at least two components have eluted and that their responses are practically identical.

Figure 8.17
Two component

mixture, two channel
detection, no

overlap:
(a) chromatogram

(b) biplot of detector
responses

It is instructive to compare biplots as chromatographic resolution decreases; several con-
ditions are illustrated in Figure 8.18 below.

Even for incomplete separation, the two-channel system still reveals the number of com-
ponents in the fused peak. Moreover, the failure of the points in the middle of the peak 
(i.e., between the component peak tops) to return to the origin in all biplots implies com-
ponent overlap. Points deviate from the perpendicular axes when their spectral response 
no longer arises from one component only. For example, in Figure 8.18b, the points in 
the biplot begin to deviate from the vertical “pure” axis after the first component’s peak 
maximum is reached—the greatest excursion from the origin—but long before the re-
sponse level for the first component has returned to zero. This signals the start of elution 
of the second component as denoted by the chromatographic trace on the left.
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.18
Two component

mixtures at different
resolutions R:
(a), (c) and (e)

chromatograms;
(b), (d) and (f) biplots

of detector
responses

.

A similar interpretation of the second and third examples in Figure 8.18 indicates that the 
second component appears soon after the first component begins to elute.

Of course, selective detection channels are rare in the real world; an analyte typically 
generates a response at many or all channels. In that case the “pure” points no longer co-
incide with the axes for each channel in the biplot. Instead the angle of the vector for each 
pure component is determined by its relative response at the two channels. In a mixture 
peak of nearly complete resolution, such as that in Figure 8.19, the biplot of non-selective 
channel responses still shows the nature of the overlap and of the detector response dif-
ferences of the two components.

Figure 8.19
Two component

mixture, two channel
non-selective

detection; R = 1.0
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8 Mixture Analysis: Multivariate Curve Resolution
If the detector has more than 2 channels, interpretation is much the same as before, al-
though we must think about more than 2 dimensions. The following figure shows a plot 
of the data from Figure 8.19 with a 3-channel detector.

Figure 8.20
Two component

mixture, three
channel non-

selective detection;
R = 1.0

Because only two analytes are present, all points actually lie in a plane. This is also true 
even when the number of detector channels is very large. Rotating the data points into a 
different perspective (see Figure 8.20b) produces a two-dimensional image essentially 
identical to those described in Figure 8.19. This means of simplification, often used to 
facilitate interpretation of multivariate data, is accomplished by Principal Components 
Analysis. Thus, MCR starts with a PCA decomposition.

MATHEMATICAL BACKGROUND
Consider again a single-component peak. The spectra collected at several time points 
across the peak differ only in intensity and noise contribution. PCA of the time-spectrum 
data matrix produces only one significant eigenvalue and a scores plot with all points 
along a ray.

Figure 8.21
Scores of a single
component peak;

labels denote sample
number

Now suppose that two components coelute. At time points across the peak, the data ma-
trix has contributions from both components. Assuming linear additivity in the detector, 
the observed spectrum at any time is the sum of proportional amounts of the individual 
source spectra, where the proportions are the relative amounts of each source at that elu-
tion time. If the noise in this mixture region is negligible, PCA produces only two signif-
icant eigenvalues; the data points from the overlap region fall in a space defined by two 
factors. The scores plot from such an overlapped chromatogram is shown below. Note its 
similarity to Figure 8.18f; both exhibit a shape characteristic of a two source mixture.
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.22
Scores from a two

component peak

The points start off along a ray defining the spectrum of one component; they then bend 
around to another ray, the spectrum of the other component. The curved portion of the 
plot contains the mixture points.

A matrix X can be decomposed into PCA scores and loadings (see “Mathematical Back-
ground” on page 5-16):

[8.5]

For a two factor matrix derived from a two component mixture, each spectrum xi can be 
expressed as:

[8.6]

Since all of the information about the overlapped peak is in this factor space, then the 
spectra of the pure components can also be expressed in this manner:

[8.7]

[8.8]

where P1 and P2 are the spectra of the two pure components, and (ρ11,ρ12) and (ρ21,ρ22) 
are their corresponding scores. In other words, the spectra of the mixture samples, as well 
as the pure compounds, can be expressed as a function of their scores and loadings de-
fining that factor space.

If by observation of the scores in the factor space we can identify (ρ11,ρ12) and (ρ21,ρ22), 
then the underlying pure component spectra can be determined from equation 8.7 and 
equation 8.8. In general, it cannot be assumed that any samples (rows of X) are instances 
of a pure component. Determining possible pure spectra is the goal of MCR. 

Certain mathematical relationships must hold for all proposed pure spectra. First, all the 
intensities in a proposed spectrum must be either positive or zero. This implies that any 
candidate score (τ1,τ2) must satisfy:

 for all j [8.9]
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8 Mixture Analysis: Multivariate Curve Resolution
where lij are elements of loading Li. This restriction is illustrated by a pie-shaped region 
in the scores plot shown below. Only points inside the wedge have positive or zero inten-
sities in the elements of the spectral vector.

Figure 8.23
Non-negative

response restriction

Second, each mixture spectrum is a linear combination of the pure components:

[8.10]

Since the amounts of the pure components must be either positive or zero, then αi ≥ 0 and 
βi ≥ 0. This translates to an exclusion of the region in factor space bounded by the most 
extreme samples in the mixture as shown in the following figure.

Figure 8.24
Non-negative
composition

restriction

Points inside this wedge have negative pure components amounts; only points outside the 
edge satisfy this second criterion. Thus, the pure component spectra must lie in the shad-
ed region shown below, which is the intersection of the allowed regions in the two pre-
vious plots .
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.25
Non-negativity

constraints
combined

A final restriction can be imposed by normalizing the spectra to unit area. This places the 
mixture points on a straight line, as shown below. Note that the scale is not the same as 
in the previous plot.

Figure 8.26
Two-component
curve resolution

constraints

The thick portions of the line represent mathematically feasible solutions for the two pure 
component spectra, one falling on the thick upper line, the other falling on the lower thick 
line. If the spectrum of one component has a unique channel, that is, a response totally 
absent from the other spectrum, then a unique solution exists; the thick line collapses to 
a point. Otherwise, the user is left to choose the “best” solution in the feasible region. 

How to choose is a topic of debate in the MCR community. Some propose the feasible 
region midpoint as the most reasonable solution when nothing is known about the under-
lying components. Others suggest the points at the extremes of each of the lines (known 
as the “outer bounds”) since these are the most dissimilar of the mathematically feasible 
spectra. Still others prefer the “inner bounds” because these are the most pure spectra in 
the data set. 

If the user knows something about the spectral shapes, then observation of the possible 
resolved spectra can lead to an appropriate selection of the best location along the feasi-
ble lines. Similarly, the chromatographer might apply knowledge about peak shapes to 
further constrain the solution. 

Once a location is selected in the feasible region, the profile shapes can be computed 
from the coordinates of the location. These coordinates are the scores for the points; mul-
tiplying by the eigenvectors will yield the normalized source profiles as in equation 8.7.
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8 Mixture Analysis: Multivariate Curve Resolution
The relative source composition at any location can be inferred as from a mole fraction 
diagram. For example, in the figure below, the solution line of Figure 8.26 has been ro-
tated for simplicity. The source locations have been fixed, and the location of one of the 
samples in X is shown as a mixture point. The distances of the mixture point (m) to the 
source locations are marked as dkm, where k is the source index.

Figure 8.27
Computing the

source compositions

The fractional compositions are computed from:

 [8.11]

The fractional compositions are scaled to the final amounts by comparing to the total in-
tensities found in the X data, found by summing each column.

RUNNING MCR
The two component curve resolution algorithm currently implemented has no prepro-
cessing options other than a choice of transforms; see “Transforms” on page 4-10. For 
curve deconvolution of, for example, a fused peak in a GC/MS experiment, no trans-
forms are generally needed (note that a separate normalization is performed during the 
algorithm; see Figure 8.26). The signal intensities from which the MCR algorithm com-
putes per sample amounts are those in the raw data. However, if the mixture samples are 
obtained independently, as in source apportionment, it is usually necessary to normalize 
the data because each sample derives from a different analysis. In this situation, area nor-
malization is recommended, that is, Divide By with a Sample 1-norm option.

Objects computed during MCR include the PCA Scores, Loadings and Eigenvalues (see 
“Running PCA” on page 5-31), plus several objects which aid in interpretation of the al-
gorithm results.

Solution Select
As mentioned earlier, a range of feasible solutions typically exists; a choice of location 
within the feasible regions produces estimates of the underlying profiles and amounts. 
Pirouette chooses the inner bounds of the feasible region by default but you can modify 
the result by manipulating the Solution Select object shown below.
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Source A location
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Source B location

Mixture point
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dab
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.28
Solution Select

object

This object allows you to ‘tune’ the results by clicking and dragging the diamond-shaped 
handle in the plot. Handle position corresponds to the relative location within the upper 
and lower portions of the feasible regions (see Figure 8.26). The resolved source profiles 
and corresponding source amounts discussed below are linked to the handle position.

Note: The solution select axis is divided into 20 segments. Position 1 represents the inner 
bound while position 21 is the outer bound. Plots linked to this object show the position 
of the solution select handle in the lower right.

Source Profiles and Source Amounts
Based on the position of the Solution Select setting, the Source Profiles and Source 
Amounts objects can be computed. Examples of these plots follow.

Figure 8.29
Source Profiles

object
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.30
Source Amounts

object

Note: The default view of Source Amounts is a Table view, but for chromatographic peak res-
olution applications, it is more practical to view this object as a line plot, particularly when 
varying the Solution Select setting.

Feasible Region
The feasible region discussed earlier (see Figure 8.26) is illustrated in Pirouette by a 
computed object of the same name. The inner and outer bounds are represented as a pair 
of small rectangles for each component.

Figure 8.31
Feasible Region

object

This MCR implementation assumes only two underlying components. The user must in-
vestigate the quality of this assumption because if more than two components are present, 
the computed results may be unreliable. A sum of the first two PCA eigenvalues close to 
100% of the variance supports the two component assumption.

The Feasible Region can also provide evidence about the veracity of the two component 
assumption. If a third component is present, samples may deviate from the diagonal line 
representing the area normalization constraint. This can occur, for example, if a noisy 
baseline region surrounding a fused chromatographic peak is included in the data matrix, 
as is shown below.
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.32
Feasible region

when more than 2
components are

present

Bounded Source Profiles and Bounded Source Amounts
The Bounded Source Profiles and Bounded Source Amounts objects overlay the profiles 
and amounts, respectively, for the inner and outer bounds for each component. Small dif-
ferences in the extreme traces indicate weak dependence on the Solution Select setting.

Figure 8.33
Bounded Source

Profiles, for
component 1

Figure 8.34
Bounded Source

Amounts, for
component 1

The example file included on the Pirouette CD—MNAPS.DAT—provides an illustration 
of tuning the MCR result using a priori knowledge, in this case, the chromatographic 
peak shape. Shown below are the spectra acquired across the peak; each trace corre-
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8 Mixture Analysis: Multivariate Curve Resolution
sponds to a different retention time, thus the variation in intensity. Spectral shape differ-
ences are difficult to discern.

Figure 8.35
Spectra of MNAPS

data: line plot of the
rows

This is also true of the chromatographic peak profiles, shown next, one trace for each 
wavelength. Here, the heights of the peak are a function of the response in the spectra at 
a given wavelength. It appears that only a single component forms this peak.

Figure 8.36
Chromatographic
peaks in MNAPS

data: line plot of the
columns

MCR applied to this fused peak produces the plots that follow. Shown in Figure 8.37a is 
the inner bound solution, where the profile of one peak is resolved into two peaks, an un-
expected chromatographic outcome. By moving the handle in the solution select object 
across the solution region, different results are produced, as shown in Figure 8.37b-d. 
The first solution that results in a single chromatographic peak is at position 3, 
Figure 8.37c. Moving too far away from the inner bound (to higher values of the solution 
select position) makes the resolved peak too skewed and tailing (see Figure 8.37d). It ap-
pears that position 3 is the preferred solution.
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.37
MCR solutions for

MNAPS data;
resolved amount

profiles

The preceding example plots focus primarily on the results for curve deconvolution of a 
chromatographic peak. When using MCR for source apportionment, it is recommended 
that the samples are normalized: set the Divide By transform, using the Sample 1-norm 
option. This will result in resolved amounts that sum to 1. An example of such an ap-
proach is shown in the following figures. 

Figure 8.38
Bounded Source

Profiles for two
mixture

components; data
were normalized

before MCR
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8 Mixture Analysis: Multivariate Curve Resolution
The bounding profiles—shown in the figures as a zoomed region of the resolved chro-
matograms—are quite similar. The position of the solution selection handle has little ef-
fect on the outcome. 

Figure 8.39
Bounded Source
Amounts for two

mixture
components; data

were normalized
before MCR

The source amounts, on the other hand, are very sensitive on the solution position. For 
source apportionment applications, it is customary to view the source amounts in the tab-
ular form shown above. The inner bound solutions imply that the most extreme samples, 
20424 and 20425, would be the pure components.

MAKING A MCR PREDICTION
To estimate the contributions to new mixture data based on the profiles derived from a 
prior MCR analysis,
• Load a new data set

• Load the MCR model

• Choose Process > Predict

In the Predict Configure dialog box, click on the MCR model name to show information 
about it.

ba
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8 Mixture Analysis: Multivariate Curve Resolution
Figure 8.40
MCR Model info

After verifying that this is the correct model for processing the new mixture data, click 
on the data set name, then on Run to start the prediction processing. Two computed ob-
jects result.

Feasible Region
The feasible region for prediction data is a projection of the new data set onto the factor 
space of the training set, shown with the upper and lower bounds from the training data.

Figure 8.41
MCR prediction
feasible region
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8 Mixture Analysis: Reference
Source Amounts
The amounts of each training set source profile in each prediction sample are shown, by 
default, as a tabular view, such as the in the following figure.

Figure 8.42
MCR prediction

source amounts

Reference

1. Tauler, R.; Kowalski, B.R.; and Fleming, S. “Multivariate curve resolution applied 
to spectral data from multiple runs of an industrial process”. Analytical Chemistry. 1993; 
65(15): 2040-2047.

2. Lawton, W. H. and Sylvestre, E. A. “Self modeling curve resolution”. Technomet-
rics. 1971; 13(3):617-633.

3. Grande, B.-V. and Manne, R. “Use of convexity for finding pure variables in two-
way data from mixtures”. Chemometrics and Intelligent Laboratory Systems. 2000; 
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Chemometrics in Chromatography 9-17

his chapter describes the files included with Pirouette and three different multivar-
iate application areas. The example files are a means to familiarize you with the op-
eration of the software and demonstrate general chemometric principles. Several 

figure prominently in the tutorials in Chapter 2, Pattern Recognition Tutorial and Chapter 
3, Regression Tutorial. Following the file description are discussions of how the multi-
variate technology has been implemented in various fields. The overview topics include
• “Food and Beverage Applications”

• “Environmental Science Applications” and

• “Chemometrics in Chromatography”

References are supplied at the end of each overview.

Description of Example Files

Table 9.1 summarizes both the data source and possible direction of multivariate inves-
tigations for the files included on the Pirouette distribution disk. Pertinent details of each 
file are then provided.

Table 9.1
Example Files

T

Name Field Data Source Multivariate Issue

ALCOHOL Clinical Wet chemistry Classifying disease 
state

ARCH Archaeology X-ray fluorescence Classifying stone 
artifacts

BUTTER Food Headspace mass 
spectrometry Quantifying rancidity

COLA Beverage Headspace mass 
spectrometry Classifying soft drinks

DAIRY Food NIR spectroscopy Predicting chemical 
composition
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9 Examples: Description of Example Files
ALCOHOL.XLS
65 samples, 54 variables (53 independent, 1 class)

The file contains various blood and urine analysis results for two groups of hospital 
patients, those in an alcohol treatment program and those thought to be non-al-
coholic. The goal is to distinguish the two groups on the basis of clinical chemis-
try.

ARCH.XLS
75 samples, 11 variables (10 independent, 1 class)

The file contains analysis results of obsidian samples collected from four different 
quarries and obsidian artifacts collected in the same region. Ten elements were 
determined by x-ray fluorescence. The goal is to develop a classification model 
from the quarry data (the first 63 samples spanning 4 quarries) and predict which 
quarry is the likely source for the artifacts (the last 12 samples collected in three 
locations). See Kowalski, et al.1, for a detailed discussion of this data set.

BUTTER.DAT
25 samples, 108 variables (106 independent, 1 dependent, 1 class)

DIESEL Automotive Fuel Headspace mass 
spectrometry

Predicting 
composition

EUROWORK Economics Government 
statistics Employment patterns

FUEL Jet fuel GC Predicting fuel 
properties

HCARB3Y Hydrocarbons VIS/NIR 
spectroscopy

Predicting chemical 
composition

HYDROCRB Hydrocarbons VIS/NIR 
spectroscopy

Predicting chemical 
composition

JAVA Beverage Headspace mass 
spectrometry

Classifying coffee 
types

MNAPS Environmental Gas 
chromatography

Curve resolution of 
heavily overlapped 
peaks

MYCALIGN Clinical HPLC Alignment of similar 
chromatograms

MYCOSING Clinical HPLC Classifying bacterial 
species

OCTANE20 Gasoline NIR spectroscopy Predicting octane 
rating

OLIVEOIL Cooking oils Headspace mass 
spectrometry

Assessing 
adulteration

PALMS Palm oils Wet chemistry/GC Classifying palm fruit 
type

RANDOM Example data Number generator Demonstration
SEVEN Example data Number generator Demonstration

TERNARY Petrochemical Gas 
chromatography

Source 
apportionment

XCIP4 Pharmaceuticals NIR spectroscopy Classifying drug 
excipients

XRF Elemental X-ray fluorescence Predicting chemical 
composition

Name Field Data Source Multivariate Issue
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The file contains mass spectra collected from the headspace of butter samples that 
had been artificially aged to produce various levels of spoilage. The reference 
values for rancidity are peroxide values. The data were supplied by Leatherhead, 
UK.

COLA.DAT
44 samples, 107 variables (106 independent, 1 class)

This is the classic soft drink challenge: distinguishing between major brands of a soft 
drink in both regular and diet varieties. The data are from headspace mass spec-
trometry.

DAIRY.DAT
140 samples, 16 variables (14 independent, 2 dependent)

The file contains near infrared measurements on brick cheese samples at 12 wave-
lengths between 900 and 1100 nm. Also included as independent variables are 
two temperature terms (variables 13 and 14). The goal is to create a regression 
model that predicts fat and moisture content with the same precision as the ref-
erence wet chemical techniques.

DIESEL.DAT
44 samples, 202 variables (200 independent, 1 dependent, 1 class)

The file contains headspace mass spectra of a series of pure diesels, pure kero-
senes, and mixtures of the two hydrocarbon types. The goal is to build a regres-
sion model to detect the presence and quantitate the level of kerosene added to 
diesel fuel.

EUROWORK.DAT
26 samples, 9 independent variables

The file contains percentages of workforce in nine different employment areas for 
twenty-six countries. The data were collected before the dissolution of the Soviet 
Union. When HCA and/or PCA are run, Eastern block countries group separately 
from those in the West.

FUEL.XLS
16 samples, 38 variables (35 independent, 3 dependent)

The file contains peak areas for a set of gas chromatographic runs on fuel samples. 
The goal is to predict physical properties of these hydrocarbon mixtures. Auto-
scale the data and exclude the most intense chromatographic peak to see an im-
provement in prediction.

HCARB3Y.DAT
60 samples, 320 variables (316 independent, 3 dependent, 1 class)

The file contains spectra of hydrocarbon mixtures from two different diode array spec-
trometers. Absorbances from 470 to 1100 nm were collected. The goals are to 
identify spectral differences between instruments, develop a regression model to 
predict weight percent isooctane, toluene and decane based on samples from a 
single instrument, and observe the difficulties associated with transferring a cal-
ibration model to another instrument.

HYDROCRB.DAT
30 samples, 320 variables (316 independent, 5 dependent)
9–3



9 Examples: Description of Example Files
The file contains spectra of the same hydrocarbon mixtures as in HCARB3Y. The 
goal is to develop a regression model to predict weight percent heptane, isooc-
tane, toluene, xylene and decane.

JAVA.DAT
20 samples, 121 variables (120 independent, 1 class)

The file contains the results from headspace mass spectral analysis of four different 
coffee roasts. The goal is to create a rapid means of assessing coffee type with-
out sample preparation or special sensory expertise.

MNAPS.DAT
19 samples, 46 variables

This file contains data from a single, highly overlapped GC peak derived from an en-
vironmental sample which was extracted to isolate polynuclear aromatic hydro-
carbons. The goal is to resolve the peak into the underlying component profiles 
and spectra for subsequent quantitation.

MYCALIGN.DAT
11 samples, 1263 variables (1260 independent, 1 class, 2 dependent)

This file contains HPLC peak areas for mycolic acids in Mycobacteria cell walls. The 
chromatograms require alignment before subsequent classification can be done.

MYCOSING.XLS
72 samples, 39 variables (38 independent, 1 class)

This file contains HPLC peak areas for mycolic acids in Mycobacteria cell walls. The 
goal is to create a classification model to predict Mycobacteria species. A com-
panion file SINGTEST.XLS is included to validate the model

OCTANE20.DAT
57 samples, 37 variables (36 independent, 1 dependent)

The file contains near infrared absorbances of gasoline samples taken at 20 nm in-
tervals spanning 900 to 1600 nm. The goal is to develop a regression model to 
predict octane rating. A companion file OCT_TEST.DAT is included to validate 
the model

OLIVEOIL.DAT
40 samples, 102 variables (101 independent, 1 class)

This data looks at a rapid means of distinguishing olive oils. The analysis is from 
headspace mass spectrometry and seeks to match olive oils to their sources in 
different countries. As an overlay, hazelnut oil (a potential adulterant) has been 
added in two concentrations to some of the Greek olive oil samples.

PALMS.XLS
19 samples, 16 variables (15 independent, 1 class)

The file contains both physical property measurements and chemical compositions 
of a variety of tropical palms. These palms are normally classified by such visual 
characteristics as the size of the nut in the fruit. The goal is to determine palm 
type based on objective measures rather than a subjective visual method. Sev-
eral sub-files of the parent PALMS file are referenced in the documentation, in-
cluding PALMONES.XLS, PALMPHYS.DAT and PALMCHRO.DAT.
9–4
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RANDOM.DAT
25 samples, 50 independent variables

This file contains random numbers and shows the lack of structure which appears in 
algorithm results produced by truly random data.

SEVEN.DAT
7 samples, 2 independent variables

This file is used in the discussions on clustering to illustrate the differences among 
the various linkage methods.

TERNARY.DAT
16 samples, 4232 variables (4203 independent, 3 class, 26 dependent)

This file contains the raw gas chromatograms from a set of mixtures, composed from 
three different oils. The chromatograms have been truncated to eliminate solvent 
peaks. The class variables contain the mixing proportions, while the Y variables 
contain marker retention times so that alignment can be run.

XCIP4.DAT
71 samples, 702 variables (700 independent, 2 class)

This file contains NIR spectra for four different common pharmaceutical excipients. 
One class variable distinguishes among the four compounds; the other splits one 
compound category by particle size. The goal is to develop a classification model 
to identify a sample (and its particle size where applicable) from its NIR spec-
trum. A companion file XCIPTEST.DAT is included to validate the model

XRF.DAT
15 samples, 268 variables (261 independent, 7 dependent)

The file contains x-ray fluorescence spectra of nickel alloys plus elemental concen-
trations in the alloys as determined by wet chemistry. Four of the seven elements 
have specific spectral features which permit these elements to be successfully 
modeled using multivariate regression (i.e., PLS or PCR). See Wang, et al.2, for 
a detailed discussion of this data set.

DATA SET REFERENCES

1. Kowalski, B.R.; Schatzki, T.F. and Stross, F.H. “Classification of Archaeological 
Artifacts by Applying Pattern Recognition to Trace Element Data.” Anal. Chem. (1972) 
44: 2176.

2. Wang, Y.; Zhao, X. and Kowalski, B.R. “X-Ray Fluorescence Calibration with Par-
tial Least-Squares.” Appl. Spectrosc. (1990) 44 (6): 998-1002,

Food and Beverage Applications

Scientists in the food and beverage industry are faced with many different quality control 
tasks, such as making sure that flavors meet certain standards, identifying changes in pro-
cess parameters that may affect quality, detecting adulteration in ingredients and identi-
fying the geographical origin of raw materials. Food scientists who work for regulatory 
agencies like the Food and Drug Administration are interested in detecting not only eco-
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9 Examples: Food and Beverage Applications
nomic fraud due to product substitution and adulteration but also monitoring health risks 
posed by food contamination.

Many of these quality control issues have traditionally been assessed by experts who 
evaluate product quality based on color, texture, taste, aroma, etc. Because it takes years 
of experience to acquire these skills, it would be advantageous to determine product qual-
ity by instrumental means.

Unfortunately, discrete sensors for qualities such as freshness or expected shelf life do 
not exist; therefore we must resort to measurements which, individually, may be only 
weakly correlated to the properties of interest. In analyzing this multivariate data, pat-
terns emerge which are related to product quality and can be recognized by both human 
and computer.

THE CHEMOMETRIC APPROACH
For example, a chromatogram or spectral profile can be thought of as a fingerprint, where 
a pattern emerges from the relative intensities of the chromatographic sequence or spec-
trum. If these fingerprints are repeatable for every batch packaged for sale, it is possible 
for an automated quality control system to interpret those patterns in the data.

Chemometrics is a statistical approach to the interpretation of patterns in multivariate da-
ta. When used to analyze instrument data, chemometrics often results in a faster and more 
precise assessment of composition of a food product or even physical or sensory proper-
ties. For example, composition (fat, fiber, moisture, carbohydrate) of dairy products or 
grain can be quickly measured using near infrared spectroscopy and chemometrics. Food 
properties (e.g., taste, smell, astringency) can also be monitored on a continuous basis. 
In all cases, the data patterns are used to develop a model with the goal of predicting qual-
ity parameters for future data.

The two general applications of chemometrics technology are:
• To predict a property of interest (typically adherence to a performance standard); and

• To classify the sample into one of several categories (e.g., good versus bad, Type A 
versus Type B versus Type C)

SPECIFIC APPLICATIONS
This overview describes several applications in which chemometrics software has sim-
plified methods development and automated the routine use of robust pattern matching 
in the food and beverage industry. The examples cited can be duplicated using Pirouette 
multivariate modeling software and automated in a routine quality assurance setting us-
ing either Pirouette or InStep.

Process Monitoring and Control
• Grading of raw materials1

• Routine on-line quality checks2-3

• Minimizing sample preparation4

• Determining process by which product was made5

Much of the research and the quality control effort is aimed at assessing a product's con-
sistency or identifying changes in process parameters that may lead to a degradation of 
quality standards. In most cases, no single measurement is sufficient to categorize sam-
ples for QC purposes. By examining a series of parameters simultaneously, an instru-
9–6



9 Examples: Food and Beverage Applications
mental technique can be utilized that is considerably more precise than the manual spot 
quality checks that are the tradition. The speed and efficiency of the instrument allows 
chemometrics technology to be used for batch-to-batch product control6.

Chemometric profiling is useful for detecting changes in a process or in the ingredients; 
it can also be used to monitor plant-to-plant product variations. For example, near-infra-
red (NIR) spectroscopy can be used to determine the moisture content in packaged and 
prepared goods such as baking dough. NIR can also be used to monitor the carbohydrate 
content of grains and other natural products, which vary in composition, as they are pro-
cessed. The chemometric technique has even been applied to the classification of prod-
ucts based on their nutritional makeup7.

Figure 9.1
Monitoring protein

content or other bulk
composition

properties
spectroscopically

Geographical Origin
• Identifying origin of contamination

• Determining source of ingredients by chemical composition8

• Tracing origin of finished products by flavor and aromatic components9

Chemometric pattern matching has been used in a wide variety of applications where the 
origin of a sample is in question. For instance, in developing a chemometric model for 
quality control of orange juice, two distinct groups of juice samples were shown to orig-
inate from different geographical locations (Florida and Brazil). The article demonstrated 
that chemical composition could be used to trace the origin of the fruit22.

Similar work in identifying a product's origin has been reported for olive oils10, brandy11, 
wine12 and mineral water13. Another study demonstrates that it is possible to relate com-
position patterns in wine to the wine region and the vintage year14.

Sensory Evaluation
• Classification by flavor profiles15-16

• Replacing sensory evaluation with instrumented analysis17

A major thrust in the food and beverage industry is to bring analytical instrument tech-
niques to play in sensory evaluation. Traditional sensory panels are expensive to main-
tain and can lead to inconsistent conclusions. This subjective approach to quality control 
can be (to some extent) replaced or enhanced by collecting chromatographic and spec-
troscopic information that has a high degree of correlation to sensory parameters.

Taste, smell, astringency, etc. are related to fats, oils, esters, proteins, minerals, aromatics 
and carbohydrates present in food. Many of these components can be profiled (finger-
printed) by instrumented techniques and then correlated to sensory information by che-
mometric methods. The resultant statistical model can be used in on-line or routine 
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9 Examples: Food and Beverage Applications
applications to predict flavor characteristics of unknown samples via the same instru-
mented technique.

Figure 9.2
Differentiating

products with trace
constituent patterns

Economic Fraud
• Identification of product adulteration, dilution and contamination18-20

• Detection of substitution21

It is an unfortunate fact of life for many food producers that competitors may attempt to 
undercut their business by selling an adulterated product. Similarly, a less expensive, 
lower quality product is sometimes substituted and labelled as a more expensive product.

As an example, it has been shown that adulteration can be detected in orange juice using 
trace element data and chemometric techniques22. Data were collected for both orange 
juice and grapefruit juice, a common adulterant in “100% pure” orange juice. A chemo-
metric model, or fingerprint, was created for each type of juice and for a blend of both 
juices. The model was then applied to data for new juice samples in order to determine 
product purity.

Another example is the unnecessary addition of water to grain. Is the amount of water 
added by grain resellers appropriate for dust control or is it actually economic fraud 
(higher weight, thus higher profit)? Monitoring the product by near infrared spectroscopy 
and analyzing this data with chemometrics could produce a real-time, inexpensive mon-
itoring device23.

Chemometrics can be used to identify instances where rockfish might be packaged and 
sold as red snapper. Chromatographic techniques are employed to collect data for both 
red snapper and rockfish; the data are then analyzed to create fingerprints for both types 
of fish. The model, shown in Figure 9.3, evaluates samples of fish to detect mislabeling. 
This system can be employed to verify that a particular chromatographic profile matches 
the red snapper fingerprint.
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Figure 9.3
Distinguishing red

snapper from
rockfish

SUMMARY
Chemometrics is a body of statistical techniques which can correlate food quality param-
eters or physical properties to analytical instrument data. Patterns in the data are mod-
eled; these models can then be routinely applied to future data in order to predict the same 
quality parameters. The result of the chemometrics approach is an efficiency gain in as-
sessing product quality. The process can lead to more efficient laboratory practices or au-
tomated quality control systems. The only requirements are an appropriate instrument 
and software to interpret the patterns in the data.

Chemometrics software is designed to recognize patterns in virtually any type of multi-
dimensional analytical data. Chemometrics can be used to speed methods development 
and make routine the use of statistical models for data analysis. Specifically, the applica-
tion of chemometrics to the quality control of food or beverage products results in:
• More comprehensive monitoring of product quality and changes in process parame-

ters

• Routine monitoring of raw material quality including assessment of geographical/va-
rietal origin

• Replacement or augmentation of sensory evaluation with analytical instrument sys-
tems

• More efficient detection of product adulteration, contamination and substitution

FOOD AND BEVERAGE REFERENCES

1. Cadet, F.; Bertrand, D.; Robert, P.; Maillot, J.; Dieudonne, J. and Rouch, C. “Quan-
titative determination of sugar cane sucrose by multidimensional statistical analysis of 
their mid-infrared attenuated total reflectance spectra.” Appl. Spectrosc. (1990) 45 (2): 
166-170.

2. Lindberg, W.; Oehman, J.; Wold, S. and Martens, H. “Determination of the proteins 
in mixtures of meat, soymeal and rind from their chromatographic amino-acid pattern by 
the partial least-squares method.” Anal. Chim. Acta (1985) 171: 1-11.

3. Robert, P.; Bertrand, D.; Devaux, M.F. and Grappin, R. “Multivariate analysis ap-
plied to near-infrared spectra of milk.” Anal. Chem. (1987) 59 (17): 2187-2191.
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4. Cowe, I.A.; Koester, S.; Paul, C.; McNicol, J. and Cuthbertson, D.C. “Principal 
component analysis of near infrared spectra of whole and ground oilseed rape (Brassica 
napus L.) Samples.” Chemometrics Intell. Lab. Systems (1987) 3: 233-242.

5. Downey, G.; Robert, P.; Bertrand, D. and Kelly, P.M. “Classification of commercial 
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7. Vodovotz, Y.; Arteaga, G.E. and Nakai, S. “Classification of ready-to-eat breakfast 
cereals and food proteins using a new multivariate analysis technique.” IFT '91 Program 
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8. Stenroos, L.E. and Siebert, K.J. “Application of pattern–recognition techniques to 
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(1984) 35 (9): 1004–1011.

10. Armanino, C.; Leardi, R. and Lanteri, S. “Chemometric analysis of Tuscan olive 
oils.” Chemometrics Intell. Lab. Systems (1989) 343-354.
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wine by determining the aromatic composition and applying the SIMCA chemometric 
method.” Riv. Vitic. Enol. (1985) 38 (4): 254–262.

13. Scarminio, I.S.; Bruns, R.E. and Zagatto, E.A.G. “Pattern recognition classification 
of mineral waters based on spectrochemical analysis.” Energ. Nucl. Agric. (1982) 4 (2): 
99-111.

14. Kwan, W.O. and Kowalski, B.R. “Classification of wines by applying pattern rec-
ognition to chemical composition data.” J. Food Sci. (1978) 43: 1320-1323.

15. Van Buuren, S. “Analyzing time-intensity responses in sensory evaluation.” Food 
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16. Van Rooyen, P.C.; Marais, J. and Ellis, L.P. “Multivariate analysis of fermentation 
flavor profiles of selected South African white wines.” Dev. Food Sci. (1985) 10 (Prog. 
Flavour Res.): 359–385.
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19. Engman, H.; Mayfield, H.T.; Mar, T. and Bertsch, W. “Classification of bacteria by 
pyrolysis–capillary column gas chromatography–mass spectrometry and pattern recog-
nition.” J. Anal. Appl. Pyrolysis (1984) 6 (2): 137–156.

20. Headley, L.M. and Hardy, J.K. “Classification of whiskies by principal component 
analysis.” J. Food Sci. (1989) 54 (5): 1351-1354.

21. Saxberg, B.E.H.; Duewer, D.L.; Booker, J.L. and Kowalski, B.R. “Pattern recogni-
tion and blind assay techniques applied to forensic separation of whiskies.” Anal. Chim. 
Acta (1978) 103: 201-212.

22. Nikdel, S. and Fishback, V. “Chemometric Sleuthing: Is It Really Orange Juice” Sci-
entific Computing & Automation (1989) 5(6): 19-23.

23. Devaux, M.F.; Bertrand, D.; Robert, P. and Qannari, M. “Application of multidi-
mensional analysis to the extraction of discriminant spectral patterns from NIR spectra.” 
Appl. Spectrosc. (1988) 42 (6): 1015-1019.

Environmental Science Applications

Scientists involved in environmental studies are faced with many different analytical 
tasks, such as assembling baseline studies, evaluating the contributing influence of chem-
ical discharge to complex natural systems, and modeling biological response. Industrial 
scientists are concerned with the mechanics of recycling materials and maintaining pro-
cess control systems that minimize pollution. Governmental control agencies, such as the 
EPA, are interested in detecting the presence of specific environmental agents, as well as 
assessing environmental damage from human sources.

Sometimes the problem is simply the enumeration of the presence or absence of constit-
uents, whether natural or introduced. Other concerns deal with the influence that envi-
ronmental factors will have on systemic response. In-field monitors and laboratory 
instrumentation may not directly measure these influence factors. Therefore, we are 
forced to make measurements of an indirect set of variables which may be only weakly 
correlated to the properties of interest in the system. Convenient and powerful multivar-
iate methods have proven useful in managing and analyzing these types of complex prob-
lems.

For example, envision a chromatogram or spectral profile of a sediment extract as a fin-
gerprint of the constituents in the sample. The pattern represents the varying amounts of 
the individual chemicals present. The variation contained in the signature patterns of 
these samples from multiple sites can reveal chemical relationships which can be char-
acteristic of known natural phenomena or identified pollution sources.
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Figure 9.4
Detecting surface

discharge,
characterizing an

aquifer’s profile and
determining extent

of stratigraphic
leakage11

Chemometrics is a multivariate mathematical and statistical approach to the analysis and 
interpretation of analytical data. Pattern recognition methods have been used in chemo-
metrics to reveal and evaluate complex relationships in a wide variety of environmental 
applications. These methods have contributed to the systematic understanding of sedi-
ment trace metal and organic concentrations arising from natural and anthropogenic 
sources. Chemometrics is also useful in evaluating biological response to natural or toxic 
factors, and can identify the source of the contamination. Common uses of this technique 
are to:
• Identify factors that are combinations of measurable variables;

• Illustrate groups or cluster associations among samples;

• Assess spatial distribution of environmental factors or perturbations; and

• Predict a property of interest (such as biological response to chemical perturbation).

SPECIFIC APPLICATIONS
This overview describes a series of applications in which chemometrics software has 
contributed to the understanding of complex environmental systems. The examples cited 
can be duplicated using Pirouette and automated for routine analysis with InStep™.

Atmospheric and Sediment Processes
• Distribution of natural or toxic chemicals1-3

• Source identification, regional influence4-6

• Abatement and control7-8

Pollution modeling is generally pointed toward the identification of man-made sources 
of chemicals. By  understanding the spatial and temporal variation of these pollutants, 
control measures can be applied to bring levels into compliance with environmental stan-
dards. Multivariate chemometric modeling techniques can help in situations where the 
emission of chemicals is added to natural sources of these same materials. The problem 
becomes one of discriminating the relative contributions of natural and human influence.
9–12
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Chemometrics can be used to discern structure in a data set as a whole, even when indi-
vidual measurements show only slight degrees of correlation. The most common use of 
the technology is to apportion the sources of pollution. In atmospheric studies, the rela-
tive impact of nature (such as the suspension of sea salt, or impact of forest fires) can be 
contrasted with suspended road dust, automotive emissions, and specific industrial con-
tributions. Similarly, sediment studies can confirm the presence of chemicals in excess 
of what would be expected to occur naturally.

Figure 9.5
Classifying

environmental
samples by pollution

status and
determining

contamination
source15

The idea behind chemometric analysis is that you can effectively attribute a source to an 
environmental contaminant without the need to find specific marker compounds. By 
evaluating all of the data at once, complex data can be reduced to a set of interpretable 
patterns without making a priori assumptions about the cause of the perturbation. Not 
only does chemometrics supply an effective key to interpretation, the analysis yields pre-
dictive models that can be used successfully on a routine basis.

Water Management
• Pollution assessment and control9-11

• Nutrient sources and dynamics12-13

• Trophic studies14

Inevitably, the vast majority of the waste generated by man finds its way into surface and 
subsurface water. Industrial and municipal effluent is pumped into bodies of water direct-
ly and the contaminants dispersed in the air or in sediments eventually is partitioned into 
the water table, lakes, rivers and seas. Tracking the migration of water pollution and as-
sessing enrichment or scavenging ratios is often far more complicated than in atmospher-
ic or sediment studies. The complication stems both from the extreme diversity of 
sources and from the complexity of effects as the new materials are introduced.

A highly useful aspect of chemometric modeling is that data used to generate patterns is 
not restricted to a single instrument source. Rather, the technology allows the combina-
tion of data from a variety of instrument systems as well as wet chemistry, biology and 
general descriptive data. An offshoot of the analysis is that, when a model is generated, 
you have the opportunity to assess the contributing value of individual pieces of your da-
tabase relative to the inherent information content it brings to the problem. This can lead 
to more efficient data collection methods in future studies.
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Biological Response Modeling
• Ecology and toxicity15-18

• Predicting species growth19

• Impact on health, tissue analysis20-22

While the modeling of pollution assists the evaluation and control of chemical factors in 
the environment, biological response modeling transforms these abstracted variables into 
potential health consequences. Chemometrics can allow a more efficient detailing of the 
influences of natural and foreign factors on the well being of specific biological systems. 
Furthermore, vital correlations among secondary factors may exist and be underappreci-
ated without using this approach.

Figure 9.6
Predicting species

growth patterns from
lake systems

dynamics and
nutrient parameters

Biological response to environmental contaminants is an extremely complex process. 
Multivariate classification and calibration methods are particularly well-suited to ex-
tracting predictive information from a set of measurements that individually may show 
only a small correlation to the property of interest. Through the use of multivariate mod-
els, we can be more effective in charting relationships between species diversity or 
growth patterns and climatological or pollution variables. Chemometric assessments 
have also been used to correlate environmental factors to specific human health concerns.

Industrial Maintenance and Process Control
• Sorting of recycled material23

• Optimizing plant effluent24-25

• Assess and control hazardous waste26-27

Industry is often portrayed as the perpetrator of pollution arising from the manufacturing 
process. In contrast to the popular image, most industrial plants engage in a continuous, 
serious effort to reduce waste (a non-economic by-product). The benefits are clear for a 
manufacturer to remain in compliance with regulatory agencies and to provide an in-
crease in manufacturing efficiency.

The primary advantage of the chemometric approach in industrial settings is the relative 
ease of implementing a highly-focused instrument system for monitoring the quality of 
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a product or raw material. Most instruments sold are general purpose devices designed 
to generate data, but will not supply the desired information directly. A spectrophotom-
eter can give a spectrum of a piece of plastic, but it does not specify whether it is PVC, 
PET, etc. Chemometrics software acts as an intermediary, interpreting the spectrum in 
this case, to provide the exact information desired. There is no need to build (and pay de-
velopment costs for) a specific sensor system, when a general purpose instrument can be 
rapidly turned into a source of highly specific quality control information through a che-
mometric calibration process.

SUMMARY
Environmental scientists are charged with collecting and evaluating complex, inexplicit 
data to understand and solve concrete problems. Chemometrics is a discipline which uti-
lizes multivariate statistical techniques, directly correlating variations in natural or toxic 
materials to their environmental response. Patterns in the physical and chemical data are 
modeled, and the models can be routinely applied to future data in order to predict com-
parative consequences.

Chemometrics software, such as Pirouette, is designed to recognize patterns in virtually 
any type of multidimensional analytical data. Chemometrics can be used to speed meth-
ods development and make routine the use of statistical models for data analysis. Specif-
ically, the application of chemometrics to environmental analysis can result in:
• Detection of pollution contributions from a complex mixture of sources;

• Assessment of geographical or atmospheric distributions and influences;

• Prediction of biological response to perturbation;

• Understanding the interplay of influential factors which cannot be directly measured;

• Optimization of processes for controlling plant waste or recycling; and

• Improvement in the interpretability of analytical instrument data.
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Chemometrics in Chromatography

Chromatography is an extremely versatile technique for the analytical laboratory. The 
chromatographic patterns generated by modern instruments are used in a wide variety of 
quantitative and qualitative analyses. The techniques are robust enough (and we have as-
sembled experience enough) to allow a rapid development of chromatographic methods 
and move this experience into routine use in an analytical laboratory, quality control lab-
oratory, or even an in-line process setting.

At least three goals can be identified for projects which use chromatographic instrumen-
tation:
• Quantitation of the components in an analysis mixture

• Separation of components in the mixture for purposes of fraction collection

• Matching of the chromatographic patterns to an experience set or library

Although it is not always an expressed goal of a chromatographic analysis, we commonly 
use human pattern recognition skills to interpret the instrument output. The purpose of 
this pattern recognition step is usually to classify the sample in some way (e.g., is the 
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sample of acceptable quality or is the sample consistent with a previous run?). Through 
the methods development process, we often strive to develop a set of rules-of-thumb for 
interpreting patterns. Often these heuristics involve calculating the ratio of two intensi-
ties or developing a simple decision tree based on a series of features in the chromato-
graphic trace.

This overview describes a series of applications in which pattern recognition software 
has simplified methods development and automated the routine use of robust pattern 
matching in chromatography. The field of study which encompasses this technology is 
called chemometrics and the examples cited can be duplicated using Pirouette multivar-
iate modeling software.

A chromatogram can be thought of as a chemical fingerprint where the pattern emerges 
from the relative intensities of the sequence of peaks passing by the detector.

Figure 9.7
Classification of

chromatograms is
based on the relative
abundance of all the
peaks in the mixture

Chromatographic fingerprinting, whether by human intervention or automated in soft-
ware, is used in two generic application areas:
• To infer a property of interest (typically adherence to a performance standard); or

• To classify the sample into one of several categories (good versus bad, Type A ver-
sus Type B versus Type C, etc.).

The following sections contain examples of the use of chemometric technology to prob-
lems in chromatographic pattern recognition, with applications drawn from different in-
dustries.
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SPECIFIC APPLICATIONS

Pharmaceutical/Biotech
• Protein mapping for product quality control

• Grading of raw materials

• Drug identification1

Much of the research and the quality control effort is aimed at assessing a product's con-
sistency or identifying changes in process parameters that may lead to a degradation of 
quality standards. In most cases, no single concentration is sufficient to categorize sam-
ples for QC purposes. As newly bioengineered forms of products make their way to the 
market, the lack of standards will drive a further need for pattern recognition technology 
for batch-to-batch product control.

Medical/Clinical
• Identification of microbial species by evaluation of cell wall material2-3

• Cancer profiling and classification

• Predicting disease state4-6

A prime concern of clinical diagnosis is to classify disorders rapidly and accurately. Che-
mometric techniques can be applied to chromatographic data to develop models allowing 
clinicians to distinguish among disease states based on the patterns in body fluids or cel-
lular material.

All living systems consist of chemical compounds and the relative distribution of these 
constituents can be used as a biological fingerprint to type samples. Bacteria, yeast and 
molds are commonly classified using matching techniques on chromatographic patterns. 
One example is the identification of the organism causing tuberculosis and related my-
cobacterial species using HPLC.

Figure 9.8
M. tuberculosis can

be identified by
examining mycolic
acid distribution in
bacterial cell walls.

This figure shows a
3D representation of

samples of more
than 30 species.
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Food/Beverage
• Replacing sensory evaluation with instrumented analysis

• Geographical/varietal origin

• Competitor evaluation (change in process, constituents)

• Beer, wine quality control, classification7-10

• Proving economic fraud11

A constant issue in the food industry is the analysis of raw materials and finished prod-
ucts to insure consistency and quality. Chromatographic profiling is useful is detecting 
changes in a process or in the ingredients and can also be used to monitor plant-to-plant 
product variations.

A second thrust in the food and beverage industry is to bring analytical instrument tech-
niques to play in sensory evaluation. Traditional sensory panels are expensive to main-
tain and can lead to inconsistent conclusions. This subjective approach to quality control 
can be (to some extent) replaced or enhanced by adding the more objective chromatog-
raphy/chemometrics technique. 

Chemical/Petroleum
• Oil exploration (oil-oil correlation, oil-source rock correlation)12

• Refinery QC (product uniformity, raw material variation)

Organic geochemistry often involves the chromatographic analysis of hydrocarbon ex-
tracts from geologic formations or oil samples. The patterns reflected in the chromato-
grams are a combination of biological origin and any geologic alteration. Interpretation 
of the chromatographic traces can be automated using chemometrics.

Figure 9.9
Physical properties,
such as the specific

gravity of jet fuel, can
be determined via

calibration of the GC
trace to a density

measurement

Environmental
• Evaluation of trace organics and pollutants13-14

• Pollution monitoring where multiple sources are present

• Effective extraction of information from large environmental databases

Environmental studies constitute a large portion of the research and monitoring money 
spent in the world today. This expenditure reflects the concern for the effect chemicals 
have on the health of the earth’s eco system. A typical data set involves the collection of 
a large amount of data from a diverse set of instrument sources. Chromatography plays 
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a central role in this data assembly because of its sensitivity and specificity for many of 
the organic compounds of interest.

Chemometric techniques provide the means to extract usable information from the envi-
ronmental measurements. Through these pattern recognition and modeling techniques, 
improved descriptions of pollution patterns and their sources are available to the ana-
lyst15.

Forensics
• DNA fingerprinting

• Arson investigation

• Geographical origin of illegal substances

In forensic analysis, the issue is not to determine the concentration of various chemical 
constituents, but rather to determine if a chromatographic trace is correlated to a known 
sample. Chemometric pattern matching has been used in a wide variety of applications 
where the origin of a sample is in question.

SUMMARY
Chemometrics can be used to accomplish a variety of goals in the chromatography labo-
ratory:
• Speeding of methods development

• More effective multivariate calibration

• Detection and monitoring of impurities

Today’s chromatographers have jobs to do that extend beyond the act of collecting, ana-
lyzing and harvesting reports on individual samples. The true product of the analytical 
endeavor lies in the consolidation of these individual analyses into an evaluation of the 
chemical system as a whole. We compare a new sample against a compilation of our prior 
experience, we try to infer properties of interest with non-specific analytical tools, etc.

Chemometrics can be used to condense large assembly projects into more manageable 
time frames; the modeling capability allows you to speed methods development and in-
terpretation of complex chromatographic patterns. The multivariate models can be 
placed in an expert-system context to allow robust implementation of very customized 
chromatographic systems16-19.

Pirouette is designed to recognize patterns in virtually any type of analytical data. The 
process can be used to speed methods development and make routine the use of multi-
variate statistical models. The examples described in this note are easily duplicated or 
can be used as analogies for custom analyses.
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his chapter addresses the more general aspects of the Pirouette graphics interface. 
It describes the various ribbon buttons and cursor shapes and explains how to mod-
ify Pirouette’s appearance through the setting of preferences. For detailed descrip-

tions of how to work with graphics and spreadsheet views, consult Chapter 12, Charts 
and Chapter 13, Tables, respectively.

Overview

Graphic displays in Pirouette are not static—you can interact with any graphic and obtain 
additional information from it. Interaction is accomplished via a set of tools which often 
require selecting an item. This is accomplished by clicking on the item with the left 
mouse button, an action sometimes described as highlighting because the appearance of 
the selected item changes to indicate its altered state. Often it is necessary to select mul-
tiple items. Selecting conventions for lists and graphics are explained in the next two sec-
tions.

SELECTING IN LISTS AND TABLES
For multiple, contiguous selections from tables and lists, there are two approaches: click-
drag and Shift-select.

• To click-drag, click down and drag the mouse cursor, let the list scroll to the desired 
item, then release the mouse.

• To Shift-select, click on the first item, then, after scrolling down, click on the last de-
sired item with the Shift key held down.

To make discontinuous selections, use the Ctrl-select approach:

T
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• With the Ctrl key held down, click on additional items. Ctrl-select can be repeated as 
often as necessary; the selections will accumulate.

SELECTING IN GRAPHICS
Selecting points in the dendrogram and in 2D and 3D plots using the Pointer tool is sim-
ilar to the process outlined above.
• To select a point or group of points, place the cursor in an allowed region of the graph-

ic (where the cursor is displayed in its Pointer form), then click–drag diagonally to 
draw a rubber box. All points (or leaves, in the case of a dendrogram) within the box 
become highlighted when the mouse button is released.

• To reverse the selection state a group of points, Ctrl–click–drag around them. When 
the mouse button is released, previously highlighted points become unhighlighted 
and previously unhighlighted points become highlighted. The selection state of points 
outside the box is not affected.

• To add more points to the selection, Shift-click-drag around them. Previously high-
lighted points remain highlighted and the newly selected points also become high-
lighted.

• To deselect all points, click once in an allowed region with the mouse button. All se-
lected points lose their highlighting.

Selecting points in line plots using the Pointer tool is also similar.
• To select a single line, click on it. The line will change from thin to thick to indicate its 

highlighted state.

• To select multiple lines, click-drag the cursor such that the rubber box overlaps a set 
of lines, and those lines will become highlighted.

• To reverse the state of a set of lines, Ctrl-click-drag around them. Previously high-
lighted lines become unhighlighted and previously unhighlighted lines become high-
lighted.

• To add more lines to the selection, Shift-ctrl-drag around them. Previously highlighted 
lines remain highlighted and the newly selected lines become highlighted.

THE PIROUETTE WINDOW
The Pirouette environment has many structures common to Windows programs as well 
as a few unique features. The following figure illustrates some of these features. Some 
are important enough to warrant their own chapters: “Object Management”, “Tables” 
and “Charts” in particular. Refer to the appropriate chapter for more detailed discussion.
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Figure 10.1
Features of the

Pirouette
environment

Ribbon Buttons

The button ribbon provides easy mouse access to common program features. It is always 
located along the top of the Pirouette window, as shown in Figure 10.1. The suite of but-
tons displayed at any time is a function of the current window type (Object Manager vs. 
Chart). Displayed buttons are normally enabled; but if an action is not available, the but-
ton is grayed. The buttons are divided into groups. The tables which follow contain ref-
erences to button function.

FILE AND PROCESSING FUNCTIONS
Common file-oriented actions comprise the core ribbon set; these buttons, shown below, 
are present regardless of what view is current.

Table 10.1
Ribbon buttons for
file and processing

functions

Ribbon Spreadsheet

3D plot Selection cursor Array plot

Object Manager

Status bar

File Name

Button Description Reference

Load a data file from disk “Open Data” on page 16-4

Save a data file to disk “Saving Data” on page 15-4

Print current chart view “Print” on page 16-9

Configure and run an algorithm “Run” on page 16-20

Open Pirouette Help “Setup” on page 16-45
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WINDOW MANIPULATIONS
Three buttons are shown when charts are displayed; they manipulate windows.

Table 10.2
Ribbon buttons for

window
manipulations

INTERACTION TOOLS
Pirouette’s interaction tools manipulate its graphics. When an interaction tool is selected 
by clicking on its button, the cursor changes to a form specific to that tool.

Table 10.3
Ribbon buttons for

interaction tools

EDITING
Common spreadsheet editing functions are assigned ribbon buttons.

Table 10.4
Ribbon buttons for

editing

VIEW SWITCHING
The six buttons shown below switch the current graph window from one view to another. 
Clicking on one of these buttons causes the current window to immediately update with 
the new view type.

Table 10.5
Ribbon buttons for

view switching

Button Description Reference

Activate the Grabber for drag and 
drop

“Creating Charts with the 
Drop Button” on page 12-
3

Contract (that is, unzoom) a 
zoomed subplot back to its 
originating array

“Multiplots” on page 12-
20

Zoom a subplot to the full window “Multiplots” on page 12-
20

Button Description Reference
Select points in 2D or 
3D plot “Selecting Points” on page 12-5

Rotate a 3D plot “Spinning a 3D Plot” on page 12-9

Identify points or lines
“Identifying Points” on page 12-7 
and “Identifying Lines” on page 12-
15

Magnify plot regions “Magnifying Regions” on page 12-8

Select ranges in line 
plots “Selecting Ranges” on page 12-18

Button Description Reference

Cut “Cut” on page 16-13

Copy “Copy” on page 16-13

Paste “Paste” on page 16-14

Button Description Reference

Table Chapter 13, Tables
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PLOT CUSTOMIZATION
The buttons listed in below customize graphics.

Table 10.6
Ribbon buttons for
plot customization

NAVIGATION AIDS
The ribbon includes navigation shortcuts for both the Object Manager and for table views 
of raw data.

Table 10.7
Ribbon buttons for

navigation aids

SPINNER CONTROL
The final six buttons rotate axes in 3D plots; see “Spinning with Spin Control Buttons” 
on page 12-10 for a description.

3D plot “Scatter Plots” on page 12-5

2D plot “Scatter Plots” on page 12-5

Line plot “Line Plots” on page 12-13

Line plot for 
factor selection “Factor Selection Line Plots” on page 12-19

Multiplot “Multiplots” on page 12-20

Button Description Reference

Button Description Reference

Cloaking “Cloaking” on page 12-8

Label “Point Labels” on page 12-7

Selector “Specifying Axes” on page 12-5 and “Specifying 
Axes and Orientation” on page 12-14

Redraw “Redrawing Traces” on page 12-19

Button Description Reference
Contract Object 
Manager tree “Navigation” on page 11-2

Expand Object 
Manager tree “Navigation” on page 11-2

Jump to X block “Variable Type Blocks” on page 13-5

Jump to C block “Variable Type Blocks” on page 13-5

Jump to Y block “Variable Type Blocks” on page 13-5
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Cursors

In Pirouette, the cursor’s appearance hints at what type of interaction is possible. The fol-
lowing table summarizes the cursors and indicates which are controlled by the Windows 
operating system.

Table 10.8
Pirouette cursors

The arrow cursor selects windows, items from menus, objects in dialog boxes and ribbon 
functions. It is also used to navigate the dendrogram as described in “Dendrogram Nav-
igation” on page 12-25. The cursor takes on an hourglass form whenever the system is 
busy and all other operations are suspended.

A cursor changes to the insertion shape when it passes over an Edit Field in the spread-
sheet or in a dialog box. When the cursor is not over the Edit Field in the spreadsheet, the 
plus form is displayed. If the mouse button is clicked while the plus is over a cell, the cell 
under the cursor is selected and its contents appear in the Edit Field. If the plus is over a 
column/row index when clicked, the entire column/row is selected.

The horizontal double–headed arrow and a single arrow pointing right both appear in the 
dendrogram; see “Dendrogram Navigation” on page 12-25 for a discussion of their func-
tionality. The pointer, spinner, ID, magnifier, and range selection cursors appear in 
graphics windows active when the particular interaction tool was selected; they are dis-
cussed in “Interaction Tools” on page 10-4.

Finally, the last three entries in Table 10.8 appear when a drag and drop is initiated, con-
tinued and completed, respectively; see “Creating Charts” on page 12-1 for a description 
of these actions.

Cursor Description

Arrow (system)

I-beam insertion cursor (system)

Hourglass (system)

Plus, tables only

Double-headed arrow, dendrogram only

Single-headed arrow, dendrogram only

Pointer 

Spinner, 3D plot only

ID

Magnifier

Range selector, line plot only

Grab

Drag

Drop
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10 The Pirouette Interface: View Preferences
View Preferences

Often users want to customize colors and text attributes for the various views in Pirou-
ette. Choosing Preferences > View on the Windows menu opens the dialog box shown 
in the following figure.

Figure 10.2
List of views with

preferences

To change a view attribute:
• Click on a View type and inspect its Preview

• Double-click on the Attribute to modify

• Change Attribute parameters (color, font, etc.)

• Click on OK

• Check the Preview to determine if the changes are satisfactory

• Continue making changes and then click on OK to exit Preferences

COLOR ATTRIBUTES
Attributes with color in their name are modified via the Windows Color Picker shown 
below. Initially, the palette of standard colors is displayed with the current color block 
marked with a thick border.
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Figure 10.3
Color picker dialog

To create a new color, click on the Define Custom Colors button and the window expands 
as shown in Figure 10.4. Consult your Windows documentation for more details on the 
color picker.

Figure 10.4
Defining a custom

color

TEXT ATTRIBUTES
Attributes with text in their name are modified via a dialog box like that shown in 
Figure 10.5. In most cases, you can set the font, style and size. In addition, some Pirouette 
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plot and table features can have a distinct text color. These colors are chosen from a list 
in this same Text dialog box.

Figure 10.5
Text attributes dialog

GRID
Grid lines can be displayed on 2D and line plots. These can be helpful to verify values of 
plotted points but can also distract when trying to observe relationships among many 
points. To show or hide the grid lines, double-click on the Grid attribute for the desired 
view and make your selection.

Figure 10.6
Grid dialog

OTHER ATTRIBUTES
In this section, view type attributes are briefly described if they are not self-explanatory. 
Attributes associated with more than one view type are described only once.

Table
The first three attributes modifiable in table views are the background colors of the text 
fields in a table: normal, selected (highlighted), and for excluded columns or rows. The 
next three attributes control the text in these fields and can also be modified.
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Figure 10.7
Table view attributes

The Data Format attribute toggles between normal or scientific notation.

Figure 10.8
Data Format dialog

You can specify the number of decimal places in numbers in tables:

Figure 10.9
Decimal Places

dialog

Use the dialog box shown in the following figure to set column width.

Figure 10.10
Column Width dialog

The actual number of characters displayed in a column depends on font (proportional or 
monospaced), number of decimal places, and column width.
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Scatter Plots
Scatter plots have several color and text attributes. Each text attribute also controls color, 
except for Point Labels. The color of points and their labels is determined by the color 
map as explained in “Color Sequence” on page 10-18. Select the color attributes for the 
border, grid, interior, exterior, and the reference line via a dialog box like that in 
Figure 10.3. Label attributes are set via a dialog box like that in Figure 10.5 as is the font 
for the optimal factor value shown in the plot space.

Figure 10.11
2D view attributes

The appearance of plot symbols in a scatter plot is determined by the Point Style and 
Point Size attributes.

Figure 10.12
Point Style dialog

Using a vector-based point symbol may improve print quality as drawings based on vec-
tors display well at any size, unlike bitmaps which print well only at multiples of their 
original resolution.

Figure 10.13
Point Size dialog

Choosing a larger point symbol may improve visibility, particularly at higher resolution, 
but points may appear more overlapped than they really are.
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Most attributes for 3D scatter plots are similar to those for 2D scatter plots, as discussed 
above. However, three entries in the attributes list below are specific to 3D plots.

Figure 10.14
3D view attributes

You can choose the 3D rotation scheme, as shown in the dialog box below. The cylindri-
cal setting gives the impression that data points are contained in a cylinder or can, and 
the mouse action rotates the can in the direction of the cursor movement. Spherical rota-
tion functions as if the data points were enclosed in a large ball, sitting on a flat surface, 
and the mouse action rolls the ball from the top.

Figure 10.15
Rotation Scheme

dialog

The speed of the computer processor has some effect on the speed of rotation in the 3D 
plot. You can modify the default speed accordingly via the Rotation Speed Bias, as 
shown in the following figure.

Figure 10.16
Rotation Speed Bias

dialog

The remaining attribute conveys a sense of 3D on a two-dimensional computer screen. 
When depth cueing is turned on (see figure below), points lying behind the plane of the 
screen are “dimmed” to suggest being behind points in front. Note that depth cueing is 
not apparent for highlighted points because the plot symbol for a selected point overrides 
the depth status.
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Figure 10.17
Depth Cueing dialog

Line Plot
The first group of attributes for line plots, shown in Figure 10.18, have already been de-
scribed. Refer to Figure 10.3 and Figure 10.5 for a discussion of setting color attributes 
and changing text attributes, respectively.

Figure 10.18
Line Plot attributes

The line plot has additional unique attributes. The colors of the range selection and ex-
cluded region selection are selected as previously described. Line plots have titles whose 
font and color can be chosen. 

The Redraw Delay setting is the interval between the display of successive lines when 
triggered by the Redraw button, explained in “Redrawing Traces” on page 12-19.

Figure 10.19
Redraw Delay dialog

The number of x-axis labels on a line plot can be controlled by setting a parameter as 
shown below.
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Figure 10.20
Number of X-axis

labels dialog

Factor Select Plot
All of the attributes in the Factor Select plot preference suite are of types already de-
scribed. Refer to Figure 10.3 and Figure 10.5 for a discussion of setting color attributes 
and changing text attributes, respectively. 

Figure 10.21
Factor Selection

attributes

Dendrogram
The dendrogram, a special view in Pirouette, has several appearance settings. The colors 
of the dendrogram “tree” itself, as well as the reduced size overview are set via a dialog 
box of the type shown in Figure 10.3, as are the background color, the color of the “leaf” 
or end points (shown for samples which are selected) and the color of the similarity line.

Figure 10.22
Dendrogram

attributes
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Text in the dendrogram is set via a dialog box like that shown in Figure 10.5. These at-
tributes include the sample/variable “leaf” labels, the tick labels on the similarity axis and 
the informational text in the lower right corner of the dendrogram window.

Multiplot
Multiplots are special arrays of 2D scatter plots. The 2D plot attributes are governed by 
the settings for that view. However, you have some control over a few additional features 
of the multiplot view, as shown below. The Highlight Color attribute controls the color 
of the highlighted subplot (i.e., its border), and the Axis Labels attribute controls the font 
for the labels placed adjacent to each subplot. How these and the other color attributes 
are set has been previously described.

Figure 10.23
Multiplot attributes

Finally, you can specify the default number of subplots to be displayed for newly-created 
multiplots via the Subplot Columns dialog box.

Figure 10.24
Subplot Columns

dialog

Notes
The font of the text shown in the Notes windows that accompany all computed results 
are set by the standard means already described. A preview of appearance of these attri-
butes is shown in the preferences window, as shown below.
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Figure 10.25
Notes attribute

Chart Preferences

The preferences discussed above are specific to the type of plot view. A few additional 
preferences establish defaults for the plot windows themselves or for generic attributes 
of plot features. This group of preferences is accessed by the Windows > Preferences > 
Chart menu item:

Figure 10.26
Chart Preferences

submenu

LABEL ATTRIBUTES
From the Label Attributes dialog box, you have the option of setting several defaults 
which will affect all plots that are created, automatically or manually through “drag and 
drop”.
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Axis Label Modes
You can specify that data points in new scatter plots be shown with or without labels, in 
one of the three modes offered by the following dialog box. In addition, you can ask Pir-
ouette to initially display axis labels with their names or by their index numbers. 

Figure 10.27
Plot Label Attributes

dialog

Axis Labels
Using the label fields in this dialog box, the spectroscopy user, for example, can display 
an appropriate label (e.g., “wavelength”) for spectral plots. Similarly, use this dialog box 
to specify a name for the sample axis label.

WINDOW ATTRIBUTES
Pirouette allows you to control several aspects of how results windows are displayed 
through the Window Attributes dialog box.

Number of Plot Windows
By default, Pirouette displays no computed results for an algorithm when it finishes. This 
avoids spending a considerable time constructing array plots which you may often im-
mediately close. The Maximum Number of Windows Created value shown in the figure 
below allows you to dictate the number of results windows shown following completion 
of a batch run. For example, if you set this value to ‘2’ and configure 3 different PLS runs, 
only results of the first two are shown immediately. Of course, you can always drag from 
the Object Manager for any result not initially displayed.
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Figure 10.28
Plot Window

Attributes dialog

Size of Plot Windows
When creating a new plot window, Pirouette by default prepares a window of size 640 
by 480 pixels. You can override the default size for new windows by using the above di-
alog box. If you leave either of these values at 0, the size reverts to the original Pirouette 
default.

Location of Plot Windows
When you drag a new plot window from the Object Manager, its initial position is gov-
erned by a standard cascading mechanism: it is slightly offset horizontally and vertically 
from the last created window. From this dialog, you can choose to instead position the 
upper left corner of windows at the cursor ‘drop’ position.

COLOR SEQUENCE
Color sequencing affects Pirouette’s various graphic displays, most obviously the color 
bar associated with similarity settings in the dendrogram. In addition, points in 2D and 
3D plots and traces in line plots are assigned colors derived from the Color Sequence. 
See “Creating Class Variables” on page 12-27 for a discussion of how colors are assigned 
in the dendrogram and “Plot Colors” on page 12-34 for an explanation of how colors are 
assigned in scatter and line plots. The color sequence is set via the dialog shown below.
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Figure 10.29
Color Sequence

dialog

Note that there are two colors lists: Current and New. Any changes appear on the New 
list. You can add a new color or delete an existing color from the list by clicking on a 
button. When you click on Add, the color palette is presented as in Figure 10.3. In addi-
tion, you can modify an existing color by double-clicking on the color in the New list. 
Although the total number of colors in a sequence is unlimited, you should consider spec-
ifying fewer than a dozen colors, depending on your video card’s color depth.

Note: Colors are mapped directly to values in the active class. If values are continuous (e.g., 
1, 2, 3, 4, 5), point colors follow the sequence exactly. If values are discontinuous (e.g., 
5, 10, 16, 28), two classes may have the same color—if, for example, the difference be-
tween two class values is greater by 1 than the number of colors in the sequence.

Other Preferences

PREDICTION
Unlike during training, options that are used by algorithms when performing predictions 
are set in a dialog box separate from the Predict Configure. These options are not stored 
in the corresponding model but are applied whenever a prediction is made using the as-
sociated model. For example, you can override the probability setting in a model and 
make predictions based on a more lenient or more restrict qualifier. To access the dialog 
box shown below, go to Windows > Preferences > Prediction.
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Figure 10.30
Prediction

parameters dialog
box

These settings are grouped by whether they apply to classification or to regression algo-
rithms. Refer to the respective chapters for greater detail of the options and how they are 
used.

Some of the classification set of options also refer to PCA. For example, PCA and SIM-
CA, which are closely related algorithms, contain two parameters which control the size 
of the scores hyperbox and affect membership/outlier decisions for prediction samples; 
see “Augmenting the Sample Residual in Prediction” on page 5-30 and “Class Probabil-
ities” on page 6-27.

Finally, although PLS-DA is a classification algorithm, it is closely related to the PLS 
regression algorithm, and the regression settings above apply.

INFO BOX FONT
This setting controls the attributes of text appearing when the right mouse button is 
clicked on any entity in the Object Manager and when Model Info is displayed in the 
Configure Prediction and Save Models dialog boxes. The font attributes for these text 
displays are set in a dialog box like that shown in Figure 10.5, on page 10-9.

Note, however, that text attributes of the Notes object accompanying each set of comput-
ed results are not controlled by the Info Box Font, rather by its own view preference; see 
“Notes” on page 10-15.

STICKY FEATURES AND DEFAULT SETTINGS
Pirouette is shipped with an initial set of preferences. To revert to the Infometrix settings 
after making changes, click the Restore Default button present in all preferences dialogs. 
Many parameter settings not set via a preference dialog are instead “sticky”, that is, the 
next time you use the feature, its previous setting is preserved. For example, when you 
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load a data file and set the File Type to be ASCII, the next time you access the Open Data 
dialog box, the file type will still be set to ASCII.

Preference Sets

The last three items on the Windows > Preferences menu manage preference sets cus-
tomized for special uses, such as printing. When you find settings you would like to pre-
serve, choose Create and assign a name as shown in the following figure

Figure 10.31
Create Preferences

dialog

Subsequent preference changes accumulate under the assigned name. Because any 
changes made to preferences affect only the currently active set, choose the Create menu 
item to start a new set, then proceed to change preferences. That way, the set active be-
fore you created the new set is not perturbed. You may delete or switch to a different pref-
erence set as shown below.

Figure 10.32
Deleting and loading

preference sets

 

Language

Menus, text in dialogs and messages and warnings have been localized in Pirouette. Se-
lection of the language to use is done in a program external to Pirouette (prior to version 
4.0, this was done via a dialog in the Pirouette preferences). To choose the language in 
which you wish to display these parts of the Pirouette interface, select Start > Programs 
> Infometrix > Language Switcher.
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Figure 10.33
Language Selection

dialog box

The languages supported include the following:
• English

• French

• German

• Italian

• Japanese

• Portuguese

• Spanish

After you change the language, you must quit, then restart, Pirouette for all of the appro-
priate text to appear in the interface.

Note: Limited users cannot change the language setting. Ask your IT person or other user with 
administrator privileges to change the language for you.
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n Pirouette, the term object refers to either the raw data for any subset in the open data 
file or an algorithm result. Because you will often create and run algorithms on more 
than one subset of your data and because most algorithms produce multiple results, it 

is easy to generate a large number of objects for each file. The Object Manager keeps 
them organized and provides an easy to use, visual record of your work within Pirouette. 
For example,
• It lists the existing subsets and the algorithms which have been run on them

• It shows the current view of any existing charts

• It provides a means to assemble disparate results in a single window

The Object Manager Window

The Object Manager window is composed of an Objects tree that organizes all computed 
results for every subset contained in a Pirouette file. Each tree has branches nested to 
show successively more specific information. The representation of items within the tree 
are iconic. The following table lists all Object Manager icons and describes their corre-
spondence to objects and plot objects.

Table 11.1
Object Manager

icons

I

Icon Description
Object Tree icons

File root

Data subset

All results from computation with a given algorithm

Group (or subset) of results from a given algorithm

Algorithm result which is a matrix
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11 Object Management: The Object Manager Window
NAVIGATION
The Object Manager window can be minimized but not be closed. After an algorithm has 
been run, the file root icon shows an attached folder icon, initially in the closed aspect.

Figure 11.1
Object Manager after
running an algorithm

Moving up and down the object tree is much like navigation in the Windows File Man-
ager or Explorer. To open a folder, double-click on its icon. To close a folder, double-
click on the open folder icon.

Algorithm result which is a vector

Dendrogram result

Notes

Icon Description
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Figure 11.2
Object Manager with

open algorithm
folder

To open all folders, click on the right arrow ribbon button; it opens the Object Manager 
tree one level. Similarly, each click on the left arrow closes the trees one level.

NAMING CONVENTIONS
Each level in the Object Manager hierarchy has a naming convention.

Set Level
Sets appear at the level just below the root icon. In Figure 11.2 only one set, called Full 
Data, exists. Subsets formed either by dragging the file root icon to the work area or by 
create exclude/include operations are assigned default names which you can change; see 
Renaming Objects on page 11-6.

Algorithm Level
Algorithm folders are nested below the set on which the algorithm was run. Repeat runs 
on a subset are distinguished by an appended sequence code. Algorithm folders, like sets, 
can be renamed.

Note: Note that you cannot rename a subset or an algorithm folder with an already existing 
name.

Results Level
Each algorithm execution produces one or more objects which are stored in an Algorithm 
folder. The Object Manager, when expanded to show the third level, lists these objects 
by name. The names usually correspond to the matrix entity produced by the computa-
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tion, for example, PCA Scores. However, some results are collections of vector entities 
which have important relationships to each other, for example, PCA Outlier Diagnostics, 
which includes Sample Residual and Mahalanobis Distance vectors. Object Manager en-
tries at these levels cannot be renamed.

Several algorithms produce results tied to a Y variable or a class category. In such a sit-
uation, a folder is shown at the third level, indicating that the results are grouped and in-
dividual results appear as level four items. Thus, a SIMCA Scores object is listed 
underneath the category’s value, indicating that the scores are those from only that cate-
gory. In the following figure, there is a display of SIMCA results listed under CS1, which 
is the 1st class category in the data set.

Figure 11.3
Object Manager with

SIMCA results

Object Information
Names may not always be specific enough to relate the history of the object. Therefore, 
all algorithm results are accompanied by another object known as the Notes. This object 
contains, by default, a description of the computed algorithm results in a separate text 
window; you can also insert additional information about your analysis in this window.
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If you click on an Object Manager icon with the right mouse button, a small window 
opens containing auxiliary information. The type of information depends on the object 
selected.
• Click on the root icon to see the full path to the data file

• Click on the set icon to see the dimensionality of the set

• Click on the algorithm folder icon to see run configuration details

• Click on the group icon (Y variable or class category name) to display the “path” to 
the group, i.e., the set and algorithm names

• Click on the result icon to display the “path” to the result

An example of the algorithm information is given below.

Figure 11.4
Object information

A right mouse mechanism also exists for identifying plots in an array; see page 12-3 for 
details.

FINDING OBJECTS
If the list of objects is short, it is easy to find the subset or algorithm results. However, 
after you have run many algorithms on a plethora of subsets, scrolling the Object Man-
ager window becomes tedious. The Find dialog box facilitates searches.
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Figure 11.5
Find dialog box

The basic options are Find and Select. The former moves the highlight forward or back-
ward to the next instance of the text string. The Select button in combination with the All 
Occurrences check box is useful when you want to highlight all objects containing a giv-
en text string in the Object Manager display. This feature enables you to create a custom 
array plot of, for example, all scores from multiple runs of PCA using different prepro-
cessing settings. Note that the “Find what” string is case sensitive.

Note: The object(s) you wish to find must be visible in the Objects tree. Use the right navigation 
arrow in the ribbon to expand the tree to show as many levels of objects needed.

If the result of your find operation highlights more than one result in the Object Manager, 
click down on one of the highlighted objects, then drag to the workspace and a custom 
plot array will be created with each highlighted object as a subplot in the array (see also 
“Custom Charts” on page11-8). 

If you want these multiple objects to each appear in its own window, hold down the Shift 
key just before releasing the mouse. 

RENAMING OBJECTS
Pirouette automatically assigns a unique name to each new subset based on the root word 
Unnamed. This permits you to create a series of subsets without taking the time to rename 
them. However, eventually you will want to assign more descriptive names. To rename 
a subset,
• Click on the Set icon in the Object Manager

• Choose Rename from the Objects menu

and the dialog box shown below will be displayed.
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Figure 11.6
Rename dialog box

• Type in a new name for the set

• Click on OK

The revised name will appear beside the Set icon and in the title bar of corresponding 
plots. The set name also appears in other dialog boxes: the Predict Configure, Save Mod-
el and Save Objects dialogs. The same general procedure can be used to rename algo-
rithm folders.

DELETING OBJECTS
When you save a file, Pirouette stores everything present shown in the Object Manager. 
To prevent algorithm results or subsets from being stored, click once on the object’s icon, 
then select Delete from the Edit menu or press the Del key. Before Pirouette deletes the 
object, you are reminded, via the following dialog box, that this action is irreversible.

Figure 11.7
Warning dialog when

deleting objects

When sets or algorithm folders are deleted, any existing plots containing those results are 
also deleted.

Note: Retaining all sets and their computed results creates a sort of processing audit trail. De-
leting objects, on the other hand, results in smaller data files.

Charts

After an algorithm runs and you drag results to the work area, Pirouette displays the re-
sults in a Chart window. If you drag the algorithm folder, rather than an individual object, 
the chart will be a collection of subplots called an array plot. You can retrieve any chart 
from the Object Manager or create a custom array by drag-and-drop tactics. Clicking on 
a chart’s go away box causes the chart to be deleted but you can always recreate it as de-
scribed below.
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CREATING CHARTS
To create a chart via a procedure commonly referred to as Drag and Drop,
• Click on the icon in the Object Manager

• With the mouse button held down, move the cursor out of the Object Manager window

• When the cursor is over a clear space in the Pirouette window (called the Pirouette 
workspace), release the mouse button

During dragging, while the cursor is over the Object Manager window, it resem-
bles a hand carrying a chart:

When the cursor is over an allowed drop area, it resembles a hand releas-
ing a chart:

Allowed drag and drop areas are unoccupied space in the Pirouette window, any 
existing chart and the ribbon area. For more information on charts and plots, see Chapter 
12, Charts, and read the next section, which discusses custom charts. Two possibilities 
for creating charts are:
• Drag and drop an Algorithm icon (a folder) to make a chart with all algorithm results. 

If you have put away (closed) the original chart created when the algorithm was run, 
this is how you would recreate the same view of the results.

• Drag and drop a single result icon to make a chart of only that result. In many situa-
tions, a chart with only a single result plot is more useful than having that view shared 
with other subplots and is quicker to generate.

CUSTOM CHARTS
A powerful aspect of drag and drop chart creation is the ability to make custom charts. 
For example,
• Drag and drop an object icon onto an existing chart to add that new object to the col-

lection of plots already in the chart.

• Highlight more than one object or chart icon. Drag and drop the group to create a new 
chart or add it to an existing chart.

Object Manager entities below the file root icon can be dropped into an existing chart. 
Thus, custom charts can contain a combination of subplots. In fact, you can add objects 
to zoomed subplots so that when the chart is fully shrunk to its array view, some subplots 
are given more importance than others. For example, Figure 11.8, which emphasizes the 
scores plot, was created via the following steps:
• Click on the Factor Select object in the Object Manager

• Ctrl-click on the Scores object in the Object Manager

• Drag the two icons to the Pirouette desktop to create a new “User” chart with these 
two objects side-by-side

• Zoom the Factor Select subplot by pressing Enter or double-clicking the subplot

• Click on the Loadings object in Object Manager

• Drag the Loading object onto the zoomed chart

• Unzoom the Factor Select plot by pressing Ctrl-Enter or Shift-double-click
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Figure 11.8
Custom chart with an

array of an array

Subsets

Subset creation is a powerful means to investigate multivariate data. We may wonder if 
a result is dominated by anomalous samples or variables. By excluding suspect samples 
and/or variables and rerunning algorithms, we can determine the general applicability of 
a result. Pirouette allows exclusion subset creation from either tabular (see “Creating 
Subsets from Tables” in Chapter 13) or graphical (see “Creating Subsets from a Graphic” 
in Chapter 12) views. Once a subset has been created, it appears in the Object Manager 
with a default name of UnnamedN, where N is a positive integer.

Note: When you save a data set in the PIR format, all subsets are also saved. The next time 
you open that file, these subsets will be listed in the Object Manager.

It is also possible to create a new subset from the Object Manager. Drag and drop the disk 
icon onto the work area to display a new window containing a table view of the data set 
with all samples and variables included and produce a new Set icon in the Object Man-
ager tree. This is a mechanism to create a subset in which all rows and columns are in-
cluded.

Finally, computational methods can be used to create subsets. These are discussed next.
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SAMPLE SELECTION
In some applications, data are easily generated and it is possible to end up with a data set 
containing so many samples that processing may bog down. Or perhaps the data space 
variation can be represented by just a small subset. Or perhaps you have unbalanced 
numbers of samples in several categories. Each of these scenarios can benefit from sam-
ple selection. 
• Choose Process > Select Samples

to present the dialog box shown in Figure 11.9. Once you have specified the appropriate 
parameters, a new subset is created that contains only the samples found by the selection 
algorithm. Subsets created in this manner are named using the following pattern:

SetName [ALG-NN%-Class]

where SetName is derived from the name of the exclusion set that is the basis for the se-
lections, ALG is a mnemonic derived from the method name, NN is the number of sam-
ples requested (% is added if that option is active), and Class is the name of the class 
variable used for grouping samples, if any.

Figure 11.9
The Sample

Selection dialog

• Choose Exclusion Set from the drop-down list

Samples can be selected from any available subset. Only the subset’s included variables 
and samples are considered by the selection method.
• Choose the category to use from the Class Variable drop-down list

If class variables exist, they are listed here; they drive category by category sample se-
lection. When the class variable is not set to None, the selection algorithm will be repeat-
ed for each category. 
• Choose how many samples to retain in the new subset

You can control how many samples to select based on percentage or absolute number. If 
you chose to make selections on a per-category basis, then the percentage and number 
choices are applied to the samples in each category, independently. If you choose a num-
ber larger than the number of samples in a category, all samples from that category will 
be retained.

The sample selection algorithms are described below.

Kennard-Stone1

This method finds samples that are most dispersed across the data space.

Euclidean distances are calculated among samples. The two samples with the largest in-
tersample distance are selected first. Then, additional samples are added to the list by two 
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criteria: for each sample not yet in the list, determine its nearest neighbor among the cur-
rent selections; select that sample whose nearest neighbor is of the largest distance.

Orthogonal Leverage2

This method finds samples of greatest influence within the data space.

Leverages are computed among all samples, and the sample of greatest leverage is cho-
sen. The remaining samples are orthogonalized against the selected sample, then the pro-
cess is repeated until the desired number of samples are selected.

PCA Hypergrid3

This method finds samples that are the most uniformly distributed in a reduced factor 
space.

A PCA is run on the sample set, and the factors are trimmed, reducing its dimensionality. 
In the trimmed scores space, a hypergrid is formed by dividing each factor dimension 
proportionally. Samples are selected by choosing one sample nearest the center of each 
block formed from the hypergrid.

Random
As implied by its name, this method will create a subset of the desired number of samples 
by a random process. Use random subsets to test reliability of multivariate models. Be-
cause it is likely you will want to challenge the model with another random set of samples 
not present in the model set, another control is offered in the dialog—Create complement 
set—that creates an additional subset from the remaining samples in the target exclusion 
subset but with all variables included. Thus, the complement set is ready for prediction.

VARIABLE SELECTION
Factor based methods, when applied to data of high signal to noise ratio, are very good 
at isolating signal from noise, resulting in dimensionality reduction. However, if very 
many correlated variables are present, this ability can be confounded. Thus, for some 
data it can be beneficial to remove unimportant variables. Pirouette offers some simple 
variable selection routines.
• Choose Process > Select Variables

to present the dialog of Figure 11.10. Once you have specified the appropriate parame-
ters, a new subset is created that contains only the variables found by the selection algo-
rithm. Subsets created in this manner are named using the following pattern:

SetName [ALG-NN%-Class]

where SetName is derived from the name of the exclusion set that is the basis for the se-
lections, ALG is a mnemonic derived from the method name, NN is the number of vari-
ables requested (% is added if percent is used), and Class is the name of the class variable 
used by the algorithm, if relevant.
11–11
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Figure 11.10
Variable selection

dialog

• Choose Exclusion Set from the drop-down list

Variable can be selected from any available subset. Only the subset’s included variables 
and samples are considered by the selection method.
• Choose how many variables to retain in the new subset

You can control how many samples to select based on percentage or absolute number.

The variable selection algorithms are described below.

Standard Deviation Rank
The standard deviation is computed for each variable, then they are sorted in decreasing 
order of standard deviation. The first N variables are retained as included in the new sub-
set, where N is the number of variables selected (see above).

Fisher Weight and Variance Weight4

These methods measure the importance of a variable in discriminating among two or 
more categories. Fisher weight ratios the intercategory means to the intracategory vari-
ances while the Variance weight replaces the means with the intercategory variances. To 
use either of these methods, 
• Select a Class variable

before running the algorithm.
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n this chapter we show how interactive graphics enable you to better understand com-
plex data. Multivariate approaches are the key to turning such data into information, 
and visualization is a means to discovering patterns in your data. This chapter de-

scribes Pirouette’s graph types, explaining how to manipulate each. Included are discus-
sions of how to link results in different windows and how to create data subsets from a 
graphic.

Creating Charts

Algorithms typically produce more than one result. Thus, chart windows produced by an 
algorithm often contain an array of subplots, each representing an object. Pirouette’s 
standard charts are probably adequate for most data analysis tasks. However, many situ-
ations demand the flexibility to create data and result views that more perfectly tell a sto-
ry. Therefore, Pirouette lets you create custom charts either from the Object Manager or 
via the Drop button.

CREATING CHARTS FROM THE OBJECT MANAGER
Clicking on an icon in the Object Manager highlights it, showing its selected state. If you 
then click and drag, the cursor changes to the Drag form (described in Table 10.8, “Pir-
ouette cursors,” on page 10-6), indicating that the contents have been picked up and can 
be transported to a destination. Moving the mouse out of the Object Manager window 
changes the cursor to a Drop form. Releasing the mouse button drops the object and cre-

I
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12 Charts: Creating Charts
ates a new chart. This process is commonly called drag and drop. A new chart can be 
created by dragging and dropping from the Object Manager. The figure below demon-
strates a drag and drop.

Figure 12.1
Creating a chart from

the Object Manager

If you hold down the Ctrl key while clicking on an Object Manager entry, any previously 
highlighted icon remains highlighted and additional selections accumulate. If more than 
one object is highlighted before the drag and the Shift key is pressed right before drop-
ping, one chart is created for each object. If the Shift key is not pressed upon dropping, 
the resulting chart contains subplots of every object selected. Such a collection of plots 
is called an array plot. This process is illustrated in the figure below.

Figure 12.2
Creating an array
plot by dragging
multiple objects

It is sometimes difficult to identify subplots in an array. Clicking with the right mouse 
button on a subplot will present an information box listing certain key properties of the 
object. The following figure is an example of this properties display.
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Figure 12.3
Subplot information

Before you can interact with a subplot, it must be zoomed; see Table 12.4, “Zooming and 
Unzooming,” on page 12-20 to learn how to accomplish this.

CREATING CHARTS WITH THE DROP BUTTON
Pirouette provides another mechanism for creating custom charts: accessing the Grabber 
tool via the Drop button. To use this method, you must have the chart visible (not mini-
mized). This is a convenient way of precisely duplicating a graphical view, yielding two 
copies with the same zoom level and orientation.
• Click on the source chart window title, making it active

• Click on the Drop button in the ribbon

• Move the cursor over the source chart

• Click-drag the cursor to the Pirouette desktop

• Release the mouse button.

When you grab a chart, whatever is displayed is dragged. Thus, if a chart array is the cur-
rent window, then the entire array of subplots is copied. If, however, you have zoomed 
one subplot, only that subplot is copied to the Pirouette work area.

Window Titles

Window titles have the general form:

NAME:ALGORITHM:VARIABLE:OBJECT;SUBOBJECT;# 

where the pieces are defined in the following table.
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12 Charts: Pirouette Graph Types
Table 12.1
Window title
components

The first two components are self-evident and can be also be gleaned from the corre-
sponding Object Manager entry. The third item, VARIABLE, appears only in algorithms 
which produce results tied to Y or C variables. For example, PCR and PLS produce some 
results for each dependent (or Y) variable. If more than one Y variable is included, the 
naming convention distinguishes the Ys. Similarly, SIMCA generates results tied to each 
category in the active class variable. The VARIABLE part of the name has two pieces: 
the CS prefix, telling that this a class specific result. The second part is the actual cate-
gory value. PLS-DA combines the variable descriptor to include both the Y index and 
the CS value in the class variable used.

The OBJECT piece of the window title is often an abbreviated form of the result name. 
Some algorithms may have sub-results, such as the score contributions, which reside in 
folders inside the main result object. The final item is an integer denoting the ith copy of 
a window. Thus, if you drag and drop a subset twice, the second window title is SUB-
SETNAME;2.

The naming convention in Table 12.1 applies only to charts created either automatically 
or by dragging a single subset or algorithm result icon to the Pirouette work area. Chart 
arrays created by dragging and dropping a variety of results and/or existing charts have 
the generic title USER.

Arranging Windows

You can minimize and rearrange chart windows. The Windows menu contains the Cas-
cade and Tile items found in most programs. By default new charts cascade relative to 
the last-created chart. However, you can specify that a new chart window appears at the 
drop position; see “Plot Window Attributes dialog” on page 10-18.

Pirouette Graph Types

Pirouette objects can be viewed in one or more forms:
• 3D plot

• 2D plot

• Line Plot, including factor selection line plot

• Multiplot

• Array Plot

• Table

Component Description

NAME Subset name

ALGORITHM Algorithm abbreviation

VARIABLE Descriptor for the regression (Yn/name) 
or category (CSnumber) variable. 

OBJECT Result’s abbreviation

SUB-OBJECT Sub-result’s name or abbreviation

# Copy counter
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12 Charts: Scatter Plots
• Dendrogram

Default views for algorithm results have been defined within Pirouette. However, view 
types can be changed by clicking on the appropriate ribbon button. Raw data (including 
subsets) can be plotted in all views except the dendrogram. The dendrogram, specific to 
the HCA algorithm, cannot be converted to any other view and non-dendrogram objects 
cannot be converted to its view.

The availability of a view type depends on the dimensionality of the object’s table view. 
Each row/column in a table has an index which is its row/column number. In the next 
section, the discussion of view types and how to interact with each is often couched in 
terms of row/column indices.

Scatter Plots

Scatter plots contain a column plotted against another column or a row index; every row 
in the table view of the object then becomes a single point in the plot. Often scatter plots 
are called 2D or 3D plots. A 2 dimensional scatter plot is initially composed of the first 
column on the X–axis and the second column on the Y–axis. A 3 dimensional scatter plot 
initially has the third column on the Z–axis.

SPECIFYING AXES
To change the columns displayed in a scatter plot,

• Click on the Selector button  in the Ribbon

and the following selection dialog box will be displayed.

Figure 12.4
Scatter Plot Selector

dialog

Highlight an entry in the Available list and click the appropriate Set axis button. When 
you click OK, the plot will be updated to show points as a function of the chosen variable. 
If you are working with a 2D plot, the Set Z button will not appear.

SELECTING POINTS
Many of the interactive operations available in Pirouette require selection of points in 
scatter plots. To select points in a 2D or 3D scatter plot,
12–5



12 Charts: Scatter Plots
• Click on the Pointer button  in the Ribbon

Move the cursor over the plot until the Pointer fingertip is just above and to the left of the 
first point you want to include in the selection, then hold the mouse down and drag down 
and to the right until all the points you want to select are contained in the rubber box. 
Figure 12.5 shows how to select the points in the left side of the graphic.

Figure 12.5
Selecting points with

the Pointer tool

As shown in the next figure, all points within the rubber box are highlighted, i.e., the 
filled diamond symbol indicates the selected status of the sample points on the left side 
of the graphic.

Figure 12.6
2D plot with some

points selected

These points remain highlighted until you deselect them. To deselect points, click the 
mouse button when the Pointer cursor is within the plot region. To select non-adjacent 
points in the plot or to deselect points in the middle of a region of selected points, use the 
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12 Charts: Scatter Plots
Ctrl key approach described in “Selecting in Graphics” on page 10-2. The next figure 
shows an example of making multiple selections in a 2D plot.

Figure 12.7
Making multiple
selections while

holding down the
Ctrl key

IDENTIFYING POINTS
When points in a scatter plot are unlabeled, the plots looks clean, especially when many 
samples are plotted. However, to display some point information,

• Click on the ID button  in the Ribbon

• Move the cursor to a point and press the left mouse button.

When the hot spot of the ID cursor is near a sample point, the row number and name of 
the point is displayed, as shown next.

Figure 12.8
Showing a row

number/name with
the ID tool

POINT LABELS
To turn labels on/off for all points in the active scatter plot,

• Click on the Label button  in the Ribbon
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12 Charts: Scatter Plots
To override the preference set by Windows > Preferences > Chart > Label Attributes for 
the active scatter plot,
• Select Point Labels from the Display menu

• Select either None, Index, Name or Class from the submenu

CLOAKING
It is often helpful to highlight important points in a plot to focus on them. This becomes 
easier with cloaking, a process which hides selected or non-selected points. The cloaking 
tool is a three-way switch. Its three positions are:
• Show all points

• Show selected points

• Show unselected points

To see cloaking after selecting some points and making a scatter plot active,

• Click on the Cloaking button  in the Ribbon

Figure 12.9 shows a 2D plot in which several points have been selected. Successive 
clicks on the cloaking button hide unselected and selected points.

Figure 12.9
A 2D plot with (a) no

cloaking, all points
shown; (b) only
selected points

shown, and (c) only
unselected points

shown

MAGNIFYING REGIONS
To magnify a portion of a plot,

• Click on the Magnify button  in the Ribbon

• Position the magnifying glass over a spot in the plotting region

• Click-drag to define a rectangular area to enlarge

• Release the mouse button and the magnified view will be displayed

To unmagnify a plot,
• Click the right mouse button with the magnifying glass in the plotting region

It is also possible to set explicit plot axis limits using the Display > Limits menu item. 
The resulting dialog is shown below.
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12 Charts: Scatter Plots
Figure 12.10 Display
Limits dialog

If you magnify a plot successively or change the display limits, you can unmagnify back 
through the reverse sequence with a series of right-mouse clicks. To immediately restore 
a successively magnified plot to its original view,
• Double-click the left mouse button

If you spin a magnified 3D plot, it reverts to the unmagnified state before spinning.

Magnifying a plot is shown in the following example.

Figure 12.11
Magnifying an area

SPINNING A 3D PLOT
A dynamic 3D scatter plot is an extremely useful visualization aid. To spin points in a 
3D plot in the active window,

• Click on the Spinner button  in the Ribbon

When you move the cursor over the plot area, it takes on the form of a top. The cursor 
then controls the rotation of the points.
• Move the cursor to the upper left portion of the 3D plot
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12 Charts: Scatter Plots
• Click and slowly drag the cursor across the plot area while holding down the mouse 
button, as shown below.

Figure 12.12
Rotating a plot with

the Spinner tool

The movement of the points corresponds to the cursor direction. Points remain selected 
in a 3D plot during spinning. If you move the spinner at a moderate speed across the plot 
and then release the mouse button while still moving, points continue to spin, a phenom-
enon termed momentum spinning. The velocity of rotation is a function of the speed of 
cursor movement when you release the mouse button. To end rotation, click once with 
the mouse button in the plot area.

Spinning with the Arrow Keys
Keyboard control of 3D rotation is provided via arrow key combinations. The combina-
tions described below produce slow spinning. Pressing the Ctrl key in conjunction with 
the combinations increases the rate of rotation by 4 times.

Table 12.2
Spinning with

keyboard control

Spinning with Spin Control Buttons
The Spin Control buttons, located on the far right of the Ribbon, operate in a similar fash-
ion to the arrow keys but involve the mouse. Three pairs of buttons control the spin di-
rection around each axes are described in the table below. Click on any button to spin 
points in the indicated direction.

Keys Spin Direction

Right Arrow Left to right around Y–axis

Left Arrow Right to left around Y–axis

Up Arrow Bottom to top around X–axis

Down Arrow Top to bottom around X–axis

Alt–Right Arrow Clockwise around Z–axis

Alt–Left Arrow Counter clockwise around Z–axis
12–10



12 Charts: Scatter Plots
Table 12.3
Spin Control buttons

in the ribbon

The effective rate of rotation increases with each successive click on the same button: the 
second click doubles the apparent spin rate over the initial rate, the third click triples the 
apparent spin rate, etc. To stop spinning begun with a ribbon button, click with the spin 
cursor in the plot area.

Rotation scheme
The rotation scheme is by default based on a cylindrical format: points rotate around the 
axis perpendicular to the direction of motion of the mouse cursor. Another form of rota-
tion is based on a the rolling motion of a sphere, a method found more natural by some 
users. In this scheme, it is as if the points are inside a rolling sphere, and the cursor acts 
like a hand on the ball. Which rotation scheme is in use is governed by a View preference. 
Figure 10.15, on page 10-12 shows how to change the setting.

Depth cueing
When many points are rotated in a 3D plot, it can be difficult to determine which points 
are “in front” of others. Pirouette offers an option to evoke depth by coloring points “be-
hind” the plane of the screen differently than “in front”. If depth cueing is turned on (see 
Figure 10.17, on page 10-13), points behind the viewing plane are shaded gray. Labels 
also turn a gray color when a labelled point is behind the viewing plane.

PLOT SCALING
In scatter plots, two options affect the appearance of data.

Range vs. Data Scaling
The default setting for 2D and 3D plots in Pirouette is range scaling. Range scaling pro-
duces a plot in which sample points are distributed across the full extent of each coordi-
nate direction in the plot area. However, range scaling may obscure relationships when 
the magnitudes of responses along the different axes are considerably different.

Data Scaling produces a plot with both axes having a range equal to that of the axis of 
largest range. By selecting the Data Scaling item in the Plot Scaling submenu of the Dis-
play menu, you convert a range-scaled plot to one in which points are presented propor-
tional to the actual ranges in the data. An example of these two plot modes is presented 
below.

Tool Description

Spin around the X–axis of the view from top 
to bottom or from bottom to top

Spin around the Y–axis of the view from left 
to right or from right to left

Spin around the Z–axis of the view in a 
clockwise or counter clockwise direction
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12 Charts: Scatter Plots
Figure 12.13
Range scaling (top)

Data scaling
(bottom)

When a row index is on an axis or when the axes are associated with disparate quantities, 
the Data Scaling option has no effect on the plot appearance, e.g., see Figure 7.15, on 
page 7-22.

All vs. Included Points
Initially, axes of subset scatter plots are scaled to the range of all points in the data set, 
whether or not they are included in the subset. In some cases, subset points occupy a 
small portion of the plot area, as shown in Figure 12.14 below. To scale the axes to the 
range of points included only in the subset, select the Included Points item from the Plot 
Scaling submenu of the Display menu. The result of this action is shown in the second 
figure.
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Figure 12.14
A subset scaled to all

points (top),
included points

(bottom)

Line Plots

Line plots contain either rows plotted against a column index or columns plotted against 
a row index. The points are connected to produce lines as shown in Figure 12.15 below.
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Figure 12.15
A line plot of the

ARCH data

SPECIFYING AXES AND ORIENTATION
When a line plot is first displayed, its orientation (that is, row or column) depends on the 
object. For raw data, the default is to plot the rows as lines. For most computed objects, 
the default is to plot the columns as lines; but objects with the same size as the raw data 
(e.g., X Residuals) have rows plotted as lines. To change the orientation,

• Click on the Selector button  in the Ribbon

and the Selector dialog box shown in the figure below opens. Change the orientation by 
clicking either the Column or Row button; the appropriate items will be placed in the Se-
lected list. For computed objects containing only one row or column the corresponding 
Orientation radio button is grayed.

Figure 12.16
Line Plot Selector

dialog

To add or remove lines, use the techniques outlined in “Selecting in Lists and Tables” on 
page 10-1 to highlight entries in the right or left list. To select all entries in a list,
• Click on any entry

• Press Ctrl-A (for All)

Next, click on Remove or Add as appropriate, then on OK to produce the modified plot.
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IDENTIFYING LINES
The ID tool acts in a line plot as it does in a scatter plot. See the discussion on page 12-
7 for additional details. The next figure shows an example of this behavior.

Figure 12.17
Using the ID tool in a

line plot

The name/number displayed corresponds to the trace with its vertex closest to the ques-
tion mark. Click-drag across the various lines, and the displayed number/name changes.

Line color is determined by the color sequence described on page 10-18. The number/
name text shown with the ID tool (discussed below) has the same color as the line it iden-
tifies, which helps distinguish among adjacent lines.

MAGNIFYING REGIONS
The Magnifying tool works in the same fashion as described for a scatter plot on page 12-
8. It is also possible to set explicit plot axis limits using the Display > Limits menu item. 
The resulting dialog is shown below.
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Figure 12.18
Display Limits dialog

Note: Note that the X Limits values are in variable index limits, not in the units that may be 
shown as the variable names.

PANNING LINE PLOTS
If a line plot has been magnified to show a restricted time region of the profiles and you 
want to show a different subregion, there are two procedures you can use:
• Unmagnify the region then select a new region to magnify, using the magnifier tool 

(see “Magnifying Regions” on page 12-8), or

• Pan the line plot to another region

To pan a line plot,
• Press and hold one of the arrows on the keypad, then click with the Magnify cursor. 

The plot will pan in the direction of the arrow key by an amount equal to the width or 
height of the current view. Thus, with the right arrow held, each click of the cursor will 
pan the plot to the right; with the left arrow held, each click of the cursor will pan to the 
left. When the edge of the plot view is reached, additional clicks will have no effect.

To 'unpan', just as in unmagnify, do a right-click with the magnifier cursor to go back to 
the previous view.

AXIS LABELS
The default labeling of the X axis for line plots is determined by a Preference discussed 
in “Axis Labels” on page 10-17. To override this setting,
• Select Axis Labels from the Display menu

• Choose the available entry (either Name or Number)

Line plots with custom labels entered in the Plot Label Attributes dialog are shown in the 
following figures.
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Figure 12.19
Custom X-axis name

labels with
continuous variables

(top), discrete
variables (bottom)

SELECTING LINES
Selecting lines in a line plot is accomplished in the same fashion as described earlier for 
a scatter plot. See the discussion on page 12-5 for additional details. A line plot with a 
single selected (i.e., fat) trace is shown below.
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Figure 12.20
A selected trace in a

line plot

SELECTING RANGES
With continuous variables (i.e., in spectra or whole chromatograms) it is often useful to 
select regions using the Range tool. To select discontinuous regions, Ctrl-click-drag. A 
line plot with multiple selected regions is shown below.

Figure 12.21
Selecting ranges in a

line plot

When selecting a new range, the range tool shows a single vertical bar, such as in the pre-
vious figure. If the tool is hovered over the edge of an existing selected range, as shown 
in Figure 12.22,
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Figure 12.22
Using Range Tool to

extend a selection

it shows a double vertical line. This is an indication that if you click-drag the tool from 
this location, you will extend the existing selection.

REDRAWING TRACES
Normally traces are drawn in order of the colors of the lines, a fast way to draw when 
many lines (i.e., samples) are plotted. However, such an approach may obscure subtle de-
tails in lines whose colors get drawn first. To see traces drawn in the order they appear 
in the data table,

• Click on the Redraw button  in the Ribbon

This feature is useful when, for example, row number corresponds to the order in which 
samples were collected. The rate at which the traces are displayed is determined by the 
Windows > Preferences > View > Line Plot > Redraw Delay preference shown in 
Figure 10.19.

FACTOR SELECTION LINE PLOTS
A special type of line plot allows the user to change a setting sometimes described as the 
optimal (or best) factor. CLS, PCA, KNN, SIMCA, PLS, PLS-DA, PCR and ALS all pro-
duce this type of line plot which can be converted only to a table view. Factor selection 
line plots have a diamond whose position is changed by clicking the mouse along the 
trace. The current x axis setting (a positive integer) of the diamond in a factor selection 
line plot is displayed in the lower right corner of all 2D and line plots of algorithm results 
dependent on the setting.
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Figure 12.23
PCA factor selection

plot

Multiplots

A multiplot is a special collection of 2D scatter plots. Any object which contains more 
that two columns/rows can be viewed as an multiplot. Multiplots must be zoomed before 
user interaction can occur. The following table summarizes the various zoom/unzoom 
possibilities.

Table 12.4
Zooming and

Unzooming

Note: Zooming and Unzooming also apply to array plots, which are collections of subplots con-
tained in a single window.

The subplot to be zoomed has a thick border called the highlight. The highlight can be 
moved by mouse clicking or by pressing the Tab key or the keypad arrow keys. Its color 
is set in the Multiplot View preference.

To convert an object with at least three columns/rows to a multiplot view,

• Click on the Multiplot button  in the Ribbon

A triangular display of variable–by–variable biplots, each a 2D scatter plot, is presented.

2 4 6 8 10

# of Factors

0.0

0.4

0.8

V
ar

ia
nc

e

Diamond, for setting 
factor number

Zoom Unzoom
Mouse Double-click Shift-double-click
Display Menu Zoom Current Plot Unzoom Current Plot
Keyboard Enter Ctrl-Enter

Button
  
12–20



12 Charts: Multiplots
Figure 12.24
ARCH data multiplot

showing default
number of subplots

When a multiplot is first shown, it uses the first n variables, where n is the value set in 
the Multiplot View Subplot Columns preference. To change this default value, see 
Figure 10.24, on page 10-15. To choose different variables for a particular plot,

• Click on the Selector button  in the Ribbon

Under Selected are the names of the currently displayed columns; add or remove entries 
in the fashion described previously.

Figure 12.25
Selector dialog box

for a multiplot

The following figure shows the result of adding variables to the multiplot of 
Figure 12.24.
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Figure 12.26
Multiplot after

variables added

The Dendrogram

The HCA algorithm produces a single result, the dendrogram. Dendrograms provide a 
great deal of useful information by showing how samples (or variables) group and by pin-
pointing anomalous samples (or variables). Pirouette dendrograms are highly interactive, 
letting you examine differences in similarity values and focus on individual branches of 
the tree–like structure. What follows is a description of the dendrogram and how to in-
teract with it, including how to set similarity values, identify leaves and create class vari-
ables. For a discussion of the HCA algorithm and an explanation of how various 
clustering techniques affect the dendrogram, see “Hierarchical Cluster Analysis” on 
page 5-1. As is the case in that discussion, the term sample will be used when either sam-
ple or variable is meant.

THE DENDROGRAM ENVIRONMENT
As shown in Figure 12.27, the dendrogram window is divided into four distinct screen 
areas: the color bar, the expanded region, the overview region and the information re-
gion. The dendrogram itself is always displayed as a tree growing from the right, dividing 
into more and more branches which eventually terminate on the left in individual sam-
ples, called leaves. The point where a branch divides is called a node. Non–leaf nodes 
always have two descendents which continue branching in pairs until they terminate in 
leaves. The dendrogram is displayed sideways for convenient leaf labeling.
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12 Charts: The Dendrogram

d Region

n Region

 Region
Figure 12.27
Dendrogram window

features

The dendrogram is scaled to similarity, a metric derived from relative Euclidean distanc-
es among samples. The similarity value at the tree root is 0.00. Terminal nodes, the indi-
vidual samples, have a similarity value of 1.00. All nodes between the root and leaves are 
branches with similarity values between 0.00 and 1.00. For the definition of similarity 
and more information on the mathematics behind the dendrogram and Hierarchical Clus-
ter Analysis, see “Mathematical Background” on page 5-2.

Information Region
The following figure shows the information region of a dendrogram. The cursor and node 
values depend on the current location of the similarity line and the current node, respec-
tively.

Figure 12.28
The dendrogram

information region

Color Bar
The Color Bar occupies the left side of the dendrogram window and displays in color the 
effects of different similarity settings. The color bar is an aid to interpreting relationships 
among samples, based on clusters defined by a similarity threshold. When you move the 
similarity cursor to the left, then release the mouse button, the colors in the bar reflect the 
clusters defined by that similarity value; see “Setting Similarity Values” on page 12-25.
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Figure 12.29
Dendrogram color

bar

Overview and Expanded Regions
The overview and expanded regions are very similar and are therefore described togeth-
er. The overview region, located in the upper right of the window, displays the entire den-
drogram without labels. The overview region, a miniature of the complete dendrogram, 
is an orientation aid. If you zoom the dendrogram, the zoomed portion in the overview 
region is displayed in a different color as shown below. This color difference can be ex-
tremely helpful in a complex dendrogram when all levels of the expanded region look 
similar.

Figure 12.30
Zoomed region of a

dendrogram
showing a different

color for the
overview

The expanded region, the site of most interaction, shows the current subtree (which may 
be the entire tree). Here you can display new subtrees, select new nodes and change the 
color bar by moving the similarity line. If the sample spacing in view allows, the color 
bar will be replaced by the sample names as shown above.
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DENDROGRAM NAVIGATION
Interaction possibilities in the dendrogram are rich. You can zoom into and out of sub-
trees and even create new class variables based on user specified similarity values.

Mouse navigation
• Click on a node in either the overview or expanded region to check similarity values 

and distances at that node.

• Double–click on any node in either region to fill the expanded region with nodes to 
the left of the selected node.

• Double–click on the far right of the of the dendrogram in the overview region to re-
store the complete tree to the expanded region.

• Point at the right edge of the expanded region. When the pointer becomes a right ar-
row, click to move one node up the tree. (Nothing happens if the dendrogram is full 
size.)

Keyboard navigation
• Up–arrow moves to the upper descendant node, equivalent to moving toward the left 

and top of the screen.

• Down–arrow moves to the lower descendant node, equivalent to moving toward the 
left and bottom of the screen.

• Right-arrow moves to the ancestor node of the current node (up a level), toward the 
right side of the screen.

• Pressing Enter zooms the expanded region to the current node position.

SETTING SIMILARITY VALUES
At the top of both the overview and expanded regions is a small handle that looks like an 
inverted caret symbol. The handle is attached to a vertical dotted line which appears in 
both regions. When the cursor is moved over the handle, it becomes a horizontal, double–
headed arrow. Click–drag this arrow to move the similarity line and modify the similarity 
value setting. The similarity line, which establishes clusters, can only be moved with the 
mouse.

When a dendrogram is first generated, the similarity line is placed initially at a value of 
0.0. Such a dendrogram is shown in Figure 12.31. Consequently, the color bar along the 
left is a single color. Moving the similarity cursor to the left until it crosses more than one 
branch causes the color bar to take on more than one color—each cluster to the left of the 
similarity threshold is colored differently.

Colors are assigned according to the color sequence; customizing the color sequence is 
described in “Color Sequence” on page 10-18. The color bar initially takes on the first 
color in the sequence. As the similarity cursor is moved to the left and the bar breaks into 
colors, colors are assigned in the sequence order. If more branches are broken than there 
are colors in the sequence, the color pattern repeats with the first color in the sequence 
for the next branch cluster. Thus, more than one cluster may have the same color.
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Figure 12.31
A dendrogram with

similarity line at 0

The following figure shows the dendrogram of Figure 12.31 after the similarity line has 
been moved to the left. Note the four colored clusters.

Figure 12.32
A dendrogram with

four colored clusters

In a zoomed expanded view, the similarity line may no longer be visible. In this case, find 
the similarity line in the overview to the right of the highlighted cluster. To move the sim-
ilarity line into the expanded region,
• Grab the similarity line in the overview region and move it to the left

Eventually it will appear in the expanded region, as shown below. Grab it in the expanded 
view for finer control of the similarity line position.
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Figure 12.33
Moving the similarity

line in the overview

CREATING CLASS VARIABLES
If a dendrogram exhibits obvious sample groupings, they are a natural basis for catego-
rizing the samples. A class variable can be constructed by assigning each sample within 
a cluster (a region of the same color in the dendrogram) the same class value with differ-
ent clusters having different values. This feature is particularly useful for classification 
problems which lack predefined class assignments. Of course, assignments derived from 
a dendrogram must always be viewed with some skepticism until their validity is con-
firmed.

To create a class variable automatically from a sample dendrogram in the active window,
• Select Activate Class from the Edit menu

Activating a class from the dendrogram accomplishes two things. First, a new class vari-
able is created based on dendrogram clusters. You can see this new variable in the class 
variable region of the Full Data table view. Because you can create more than one class 
variable from the dendrogram, a naming convention has been established which allows 
the user to distinguish the various instances. The names are composed of the first 6 char-
acters of the subset name plus the first two digits of the similarity value when the class 
was activated. Thus, when the dendrogram shown in Figure 12.32 is the active window, 
choosing Activate Class produces a class variable named QUARRY31.

The second action which occurs upon selecting Activate Class is that the newly–created 
class is activated, i.e., the class values are used to color the data points in any appropriate 
scatter or line plots; see “Linking Views” on page 12-28. The active class name appears 
at the bottom of the Pirouette window as a reminder. By activating a class and thereby 
mapping cluster color to sample points in other plots, you can compare clustering in the 
dendrogram to that found in other sample oriented objects, e.g., PCA scores plots. This 
may allow you to come to some conclusion concerning the validity of clusters defined by 
the dendrogram.
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IDENTIFYING SAMPLES
The initial view of the dendrogram may show a solid color bar or names, depending on 
the size of the window and the number of leaves displayed. If the color bar is solid and 
you zoom a branch of the dendrogram with fewer leaves, names will appear if you zoom 
far enough. The following figure shows a zoomed dendrogram with sample names. 
Names take on the same color as that of the cluster(s) containing that leaf. Not only can 
you see the clustering of samples through the placement of the similarity line, but by 
zooming the dendrogram view, you can also compare the names of clustering samples.

Figure 12.34
Zoomed dendrogram

showing sample
names

To identify a single sample when the Color Bar is solid, use the ID tool as described in 
“Identifying Points” on page 12-7. In this case, place the hot spot of the question mark 
over the leaf you wish to identify.

Linking Views

Linking is a visualization feature which enhances Pirouette’s graphical approach, permit-
ting a more complete investigation of the data. Linking is the process of highlighting 
samples (or variables) in one object view and showing that highlight status in views of 
related objects. Linking gives you different perspectives from which to evaluate the re-
lationships among samples (or variables). Linking can be initiated from any sample or 
variable oriented object view which allows highlighting. This includes table and scatter 
plot views of raw data and algorithm results as well as the dendrogram. You can link ei-
ther variables or samples or both, though this last option can become confusing.

To highlight points in a scatter plot,
• Click on the Pointer button

• Click–drag around a region containing points

and a “rubber box” becomes visible and defines the region. Upon releasing the mouse 
button, enclosed point(s) are highlighted. The Pointer tool works in much the same way 
to select samples from a dendrogram.
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The following figure shows several sample oriented objects which have no linked selec-
tions: two PCA results, a dendrogram and a table view of Full Data. However, the linking 
is about to be established from the Outlier Diagnostic result; the rubber box is encom-
passing four points.

Figure 12.35
Sample-oriented

views before
highlighting

The next figure shows the same set of objects after linking of selections has been estab-
lished. Note the top leaves with the samples highlighted in the dendrogram. The rows of 
Full Data show the selected state of the samples–the same four samples are highlighted–
and the same samples also appear highlighted in the Scores and Outlier Diagnostic plots 
at the bottom of the figure.
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Figure 12.36
Sample-oriented

views after
highlighting

So far we have emphasized sample linking. However, some objects are variable-oriented, 
such as the PCA Loadings. No change will occur in variable-oriented graphics when a 
sample is highlighted in a sample-oriented graphic, but highlighting the variables in a 
variable-oriented plot will link those selections to any other variable-oriented view. The 
figure below contains a collection of unlinked variable oriented objects: Loadings, X Re-
siduals, Modeling Power and again, Full Data.
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Figure 12.37
Variable-oriented

views before
highlighting

The next figure shows the same objects after two variables have been highlighted in the 
3D loadings plot. The Pointer indicates the selected points. Note that the same variables 
are also highlighted in the table and line plot views.
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Figure 12.38
Variable-oriented

views after
highlighting

Creating Subsets from a Graphic

Subsets provide a powerful approach to realizing what-if scenarios in Pirouette. Because 
subset creation requires highlighting, subsets can be created from any view which shows 
linking, i.e., scatter plot and table views of sample and variable oriented objects and the 
dendrogram. Creating subsets from tables is described on page 13-20.

To create subsets from a scatter plot or dendrogram,
• Select points with the Pointer

• Choose Create Exclude from the Edit menu

To create subsets from a line plot,
• Select traces with the Pointer and/or ranges with the Range tool

• Choose Create Exclude from the Edit menu

Both actions generate a new subset called Unnamed if it is the first exclusion set created, 
Unnamed-2 if it is the second, etc. If the graphic from which the subset is created is an 
algorithm result, that graphic continues to be displayed unaltered as the active window, 
and the newly created subset is found as a new entry in the Object Manager. To work 
with this subset, you must drag it from the Object Manager onto the Pirouette work area.
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12 Charts: Creating Subsets from a Graphic
You can use the above methods to exclude samples and/or variables, depending on the 
orientation of the graphic. Thus, referring to Figure 12.36, choosing Create Exclude 
would exclude the four highlighted samples while in Figure 12.38, this action would ex-
clude the highlighted variables.

Subsets can also be created from the dendrogram, as shown in Figure 12.39, where the 
samples to be excluded are in the process of being selected. The arrow cursor changes to 
the Pointer when it enters the color bar region of the dendrogram, indicating that select-
ing can occur.

Note: Creating subsets by exclusion is a quick way to remove outliers before (re)running an 
algorithm.

Figure 12.39
Excluding samples
from a dendrogram

view

All of the above scenarios involve algorithm results. If, however, the 2D or 3D plot from 
which the subset is created is not an algorithm result, rather it is of the raw data, the se-
lected points disappear when Create Exclude is chosen, and the window title changes to 
the new subset name. This is analogous to the case when a subset is created from a 
spreadsheet, i.e., the new set is displayed in the active window.

Sometimes creating subsets from a 2D plot is more efficient than operating on the table 
view. For example, Figure 12.40 contains two copies of a 2D plot of Full Data with a 
class variable on the y axis and sample # on the x axis, a combination which clearly dis-
tinguishes samples by category. (The two copies were made by composing one plot, 
clicking on the Drop button in the ribbon and dropping a second copy onto the work-
space, then tiling the windows.) To break Full Data into two subsets based on category,
• Select samples to go in one subset (as shown below)

• Select Create Exclude from the Edit menu
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Figure 12.40
Creating a subset

from a scatter plot

Figure 12.41 shows the result of this action. Note that the excluded points have disap-
peared from the left plot and its title has changed. To create a second subset containing 
the remaining samples,
• Click on the 2D scatter plot on the right

• Select the other samples (as shown below)

• Select Create Exclude from the Edit menu

Figure 12.41
Creating a second

subset from a scatter
plot

Plot Colors

Pirouette maps samples or variables to the same color across scatter and line plots, i.e., 
the color applied to a particular sample is the same in all plots containing that sample. 
The colors assigned to points or lines come from the Color Sequence; see “Color Se-
quence” on page 10-18. Thus, sample #1 takes on the first color of the color sequence, 
sample #2 takes on the second color, and so on. If there are more samples than colors in 
the sequence, the mapping wraps around to the beginning of the sequence. So with 7 col-
ors in the sequence, sample #8 has the same color as sample #1.

Note: The Color Sequence is also used to assign colors to sample and variable clusters in the 
dendrogram, based on the location of the similarity line. However, this form of color map-
ping is not analogous to that described above for line and scatter plots.

Pirouette provides another means of mapping colors to sample oriented plots. Because a 
class variable column can contain only integers, its entries can map to the color sequence 
in sample oriented scatter and line plots. This mapping is invoked by activating a class. 
To activate a class,
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12 Charts: Plot Colors
• Move to the class variable region in a table view of a subset

• Click on a class variable column head

• Select Activate Class from the Edit menu

Alternatively, you can use the Activate Class button in the status bar, next to where the 
name of the current active class is displayed.

Figure 12.42
Activate Class

button in Status Bar
• Click the button to display the Active Class selection dialog.

Figure 12.43
Active Class selector

All sample oriented scatter and line plots are thereafter colored by class. Samples with a 
value of 1 in the active class variable take on the first color in the Color Sequence, sam-
ples with a value of 2 have the second color in the sequence, etc. Again, when the number 
of categories or the category value exceeds the number of colors in the sequence, the col-
or sequence wraps. Thus, a class value of nine assumes the third color of a six color se-
quence.

Why use category-based color mapping? Samples having the same category value are 
similar somehow. The similarity should be discernible in either the raw data, in classifi-
cation algorithm results or in a sample dendrogram. Therefore, when we look at line plots 
of many samples of different categories, we expect traces of properly classified samples 
to group together as a function of category. Color mapping to class facilitates the verifi-
cation of that expectation. Similarly, scatter plots of categorized samples should show 
clustering by color (i.e., by category): data points of a cluster should plot near to one an-
other, a fact easily confirmed when the points are colored. The presence of clusters con-
taining more than one color suggests either problems with the assigned categories or that 
the axes (variables) chosen for that scatter plot view do not distinguish the different cat-
egories.

Note: When no class variable is active, color mapping is simply tied to the table view row or 
column index. Result objects which are not sample oriented, for example, the Factor Se-
lect object, are unaffected by activating a class variable because color mapping to class 
is tied only to a sample’s class value.

After activating a class as described above, the name of the class appears at the bottom 
of the screen as shown below.
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Figure 12.44
Status bar showing

the active class

To deactivate a class variable, so that the color mapping reverts to the serial order number 
of the samples in the spreadsheet,
• Select No Class from the Edit menu

or
• Click the Active Class button in the Status Bar to display the Active Class selection 

dialog.

• Choose None and click OK

Note: If a data set has only one class variable, that variable is activated automatically when 
the file is loaded. If more than one class variable, none is activated on file load.
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his chapter introduces the Pirouette spreadsheet and discusses how to move around 
in it, how to enter and modify data, how to specify variable types and fill in missing 
values. Also included are explanations of how to create/modify subsets and activate 

class variables from the spreadsheet.

Introduction to the Spreadsheet

In Figure 13.1 the various features of a Pirouette spreadsheet are identified. In appear-
ance it resembles other spreadsheets, being composed of columns and rows of cells 
which contain data values. However, Pirouette was not designed for the business func-
tions most spreadsheets perform. Instead, it was created to facilitate processing of large 
multivariate data sets. Although the data portion of the spreadsheet operates much like 
other spreadsheets, the name fields for columns and rows have behaviors unique to Pir-
ouette. Note also that the data region of a Pirouette spreadsheet is divided into three parts, 
holding data from independent, dependent, and categorical variables.

Most algorithm results can be displayed in a tabular view. In this case, however, some 
actions appropriate for raw data are disabled. Even though spreadsheet views of raw data 
and algorithm results have some differences, we will nevertheless refer to both as tables.

T
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13 Tables: Navigating the Spreadsheet
Figure 13.1
A Pirouette

spreadsheet or table

Navigating the Spreadsheet

There are a variety of ways to move around a Pirouette spreadsheet. Some methods move 
the active cell while others merely move your view to a different position in the spread-
sheet.

MOVING THE ACTIVE CELL
The active cell, which has a thick border, is where editing occurs (see “Editing Data” on 
page 13-7). By clicking on a new cell with the mouse or by one of the following methods, 
you can change the active cell.

Keyboard Control
The active cell is most easily moved with the arrow keys on the keyboard. In addition, 
Tab and Shift-Tab move the cell right and left, respectively, and Enter and Shift-Enter 
move the cell down and up, respectively. However, when a range of cells has been se-
lected, these behaviors change. Then, the active cell can be moved within a selected 
range only with the Tab and Enter key combinations. In addition, movement with these 
keys will “wrap” within the selected cell range. For example, pressing Tab with the active 
cell in the last selected cell in a row moves to the first selected cell in the next row. If you 
use an arrow key when a range has been selected, the active cell moves and the range is 
deselected.
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13 Tables: Navigating the Spreadsheet
Shortcuts for moving the active cell to a different position in the spreadsheet are summa-
rized in the following table.

Table 13.1
Keyboard shortcuts

for moving active
cell

Go To
If your data set is very large, you may want to move the active cell directly to a specific 
location. The Go To menu item provides this capability.
• Select Go To from the Edit menu

and the following dialog box will be presented.

Key(s) Action
→ One cell to right

↓ One cell down

← One cell to left

↑ One cell up

Ctrl+→ To last cell in row

Ctrl+↓ To last cell in column

Ctrl+← To first cell in row

Ctrl+↑ To first cell in column

Tab One cell to right
Shift+Tab One cell to left
Enter One cell down
Shift+Enter One cell up
Home To first cell in row
End To last cell in column
Ctrl+Home To first cell
Ctrl+End To last cell
Page Down One page down
Page Up One page up
Ctrl+Page Down One page to right
Ctrl+Page Up One page to left
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Figure 13.2
Go To dialog box

Select a column and/or a row name by clicking on a name in each list. You can select the 
destination cell by number or name by clicking on the appropriate Selection Type radio 
button. When you click on OK, your view of the table moves to that region and the cell 
specified becomes the active cell.

Note: If columns or rows are highlighted before using Go To, they will become unhighlighted 
afterwards. If you don’t want to lose the highlight status, you should navigate to your des-
tination with a means other than the Go To function.

MOVING TO A NEW PAGE
Often you may need to jump to different views of the data without moving the active cell.

Scroll Bars
Because Pirouette is designed to handle extremely large data sets, scroll bars are incor-
porated in all tabular view windows. Scroll bars are shaded regions to the right and bot-
tom of spreadsheet windows which contain scroll arrows and elevator boxes. The 
following descriptions are a brief summary of their functions; for complete information, 
refer to your Windows manual.

Scroll Arrows

Each click on a scroll arrow shifts the view in the spreadsheet by one row or column. 
Continuously pressing a scroll arrow causes continuous scrolling.

Elevator Box

The elevator box, sometimes called the thumb, is the small square located within the 
scroll bar region. Click–drag the elevator box to rapidly jump from one spreadsheet re-
gion to another. To move the view to the last page of data, drag the elevator box to the 
end of the scroll bar.
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Page Scroll Region

Click in the shaded region below/above (or left/right of) the elevator box to scroll the dis-
play by a screenful.

Variable Type Blocks
In Pirouette, the different types of variables occupy separate spreadsheet blocks. To nav-
igate between these different blocks, use the variable block buttons in the Pirouette rib-
bon. Clicking on the X, C and Y buttons displays at the left edge of table view, 
respectively, the first column of the X block (independent), Y block (dependent), and C 
block (categorical) variables. In the following figure, the first view has the active cell in 
the X block; the second view results from clicking on the C button. If there are no vari-
ables of a block type, the corresponding button is disabled.

Figure 13.3
Moving in the

spreadsheet with the
C-block button

 

Selecting Data

Many actions within Pirouette depend on the selection (highlighting) of either rows and/
or columns of data. Often entire rows or columns are selected, as during Insert and Delete 
(described below). Other actions, such as Copy, may require that a single cell or a small 
range of cells be selected but also work on entire columns or rows. As in other spread-
sheets, to select more than a single cell, you click in a cell, then drag to another before 
releasing the mouse button. All cells bracketed by the drag area are selected following 
this action. The following figure shows the result of dragging over a small range of cells.
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Figure 13.4
Highlighting a range

of cells

To select an entire row or column, click on the row or column index. This highlights the 
entire row/column, including the name. Similarly, to select a range of rows or columns, 
click on one index, drag the cursor to another then release. All rows/columns included 
from the initial click to the release point become highlighted. To select ranges that are 
discontinuous or too far apart to click-drag, use Shift-clicking to extend and Ctrl-clicking 
to append a selection. These techniques are described in “Selecting in Lists and Tables” 
on page 10-1.

Because of Pirouette’s dynamic linking among objects, when you select samples (or vari-
ables) in a data table, that highlighting appears in all other objects containing the same 
samples (or variables). Linking is discussed in “Charts” on page 12-1.

To the left of the first variable name and above the first sample name is a shaded “cell” 
that has no content; it is the Select Table button which highlights the entire spreadsheet. 
This shortcut is handy for copying the entire table contents to another application.
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Figure 13.5
The Select Table

button

Note: To select all samples, without selecting variable names, select the first sample, then hold 
down Ctrl+Shift and hit the down arrow.

Similar to the shortcuts for moving the active cell, there are shortcuts for selecting entire 
columns and rows. These are summarized in the following table. In the first column, go 
to the indicated region by a mouse click or by one of the shortcuts in Table 13.1 or in this 
table.

Table 13.2
Keyboard shortcuts

for selecting
columns and rows

Editing Data

If you are familiar with Microsoft Excel, then you already know how to use Pirouette’s 
spreadsheet. For the spreadsheet novice, the following discussion reviews basic editing 
actions.

Do First Keys Action
Go to first cell in row Shift+Ctrl+→ Selects entire row

Go to first cell in column Shift+Ctrl+↓ Selects entire column

Select an entire row Shift+↓ Adds next row to selection

Select an entire row Shift+↑ Adds previous row to selection

Select an entire row Shift+Ctrl+↓ Adds all following rows to selection

Select an entire row Shift+Ctrl+↑ Adds all preceding rows to selection

Select an entire column Shift+→ Adds next column to selection

Select an entire column Shift+← Adds previous column to selection

Select an entire column Shift+Ctrl+→ Adds all following columns to 
selection

Select an entire column Shift+Ctrl+← Adds all preceding columns to 
selection
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Note that all of these functions work with raw data subsets in Pirouette. However, algo-
rithm results are not modifiable, so some editing functions in table views of algorithm 
results are disabled. Nevertheless, you can always copy results to other destinations.

Note: If you have already run an algorithm on a subset, changing a raw data value or a variable 
type may invalidate the results: if algorithm results exist which were computed from the 
data, they will no longer relate to the modified raw data. Thus, these invalidated results, 
and any corresponding charts, will be discarded (after a warning).

However, if the changes are made to excluded data, then the results for that exclusion 
set will NOT be thrown out (new in version 4.5)

CHANGING DATA VALUES
To change a value in the active cell, simply type the new value. When you finish entering 
the value, accept the change either by clicking in another cell or using one of the key-
board methods of moving the active cell.

To enter a value into a cell not currently part of the data range (i.e., the column or row 
where you want the value to go is currently completely blank), type the value into the 
cell, as above. When you accept the entry, all other cells in that row or column are filled 
with the missing value character (“*”) so that a rectangular data area is maintained. For 
example, in the following figure, a value was added to the right of an existing data table, 
and the remainder of the column was filled with missing values.

Figure 13.6
Entering a value into

an empty cell

You will need to supply data for all missing values before processing with any of the al-
gorithms.

MANIPULATING RANGES OF DATA
You work with ranges of data when you move blocks of data from one table region to 
another.
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Cut, Copy, Paste, and Clear
Blocks of data within Pirouette are moved via the Clipboard, a memory buffer which 
stores large amounts of data temporarily. Data are put into the clipboard with the Cut or 
Copy commands and are retrieved with the Paste command. To use any of these com-
mands, you first select a range of data, then perform the appropriate action.
• Select Cut from the Edit menu

and the contents of data in the selected range are placed into the clipboard. They are re-
moved from the table when a Paste next occurs. To remove data immediately, without 
affecting the contents of the clipboard, choose Clear and missing value characters will 
appear in the selected range.

To duplicate data to other parts of a data table,
• Select Copy from the Edit menu

and the data in the selected range are placed on the clipboard. When you have highlighted 
a destination range,
• Select Paste from the Edit menu

The Paste command overwrites the contents of the destination cells.

If you copy a range of more than one cell and select a single destination cell, Pirouette 
assumes that the destination matches the origin range and pastes the entire clipboard con-
tents accordingly. If, however, you select more than a single destination cell and that 
shape does not match the copied range of cells, an error message signals the inconsisten-
cy and the paste fails. On the other hand, if the destination shape is a “multiple” of the 
origin shape, this is considered a match and the clipboard contents are pasted multiple 
times.

Note: To repeat a single value, as when assigning values to a class variable where many sam-
ples have the same category value, type in the first cell value, copy that cell, select the 
range of cells to contain the same value and paste.

Because Pirouette shares the clipboard with other Windows applications, you can ex-
change data with other programs. For example, you can paste data copied from Excel into 
Pirouette. Similarly, to include Pirouette results in a report you are writing, copy them 
from Pirouette and paste them into your word processor.

Insert and Delete
To create space for new data in your table,
• Highlight a row or column

• Select Insert from the Edit menu

The new row or column is created above the row or to the left of the column selected. If 
you select contiguous rows or columns and insert, that number of rows or columns is in-
serted. Inserted rows or columns will be of the same type as the first row or column se-
lected.

Note: You are not allowed to do an insert if the selection range includes variables of more than 
one type.
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Highlighted rows and columns can be deleted via the Delete item on the Edit menu.

CHANGING VARIABLE TYPES
To change a variable type,
• Highlight one or more contiguous columns of the same type

• Select Column Type from the Edit menu

• Choose the desired variable type from the submenu

When a column’s type changes, the column moves to the end of the appropriate spread-
sheet block and the column index changes to reflect the new column type. The next figure 
shows the changes which occur when an independent variable is converted to a class vari-
able. The variable named Rb moves to the area of the spreadsheet containing categorical 
variables and the column index is preceded by a C, indicating its class variable status.

Figure 13.7
Changing a variable

type

In Pirouette, categorical variables are integers. Therefore, if you convert an independent 
or dependent column variable to a class variable, a warning that values will be truncated 
is presented.

Note: The truncation that occurs upon converting an independent or dependent variable col-
umn to a category type of variable is not reversible.
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SORTING DATA
If the sequence of data collection or presentation is not critical, it may be desirable to sort 
data into an order that is more compelling. With the Pirouette Sort feature, you can rear-
range your data as a function of sorting “keys” in either the sample or variable domain.
• If rows are selected, the sort key is either the variable containing the active cell or the 

sample name, and selected rows will be sorted.

• If columns are selected, the sort key is either the sample containing the active cell or 
the variable name, and selected columns will be sorted.

Consider the following example. To sort the columns in alphabetical order by element,

Figure 13.8
The ARCH data set

with 10 columns
highlighted

• Highlight columns 1 through 10 as shown above

• Select Sort from the Edit menu to open the Sort dialog box shown below

Figure 13.9
Sort dialog box

Columns were selected which disables row sorting choices. To sort by column names in 
alphabetical order:
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• Select Column Names

• Choose Ascending

• Click on OK

The selected columns of data are then rearranged as shown below

Figure 13.10
The ARCH data with

columns sorted
alphabetically

If you use the Select Table button (see “Selecting Data”) to highlight all samples and 
variables simultaneously, the Sort dialog box has all options enabled. In this situation, 
the sort key is determined by type you choose, e.g., row name or column.

Similarly, if you have at least 2 rows and 2 columns selected at the same time, all sort 
type options are available.

TRANSPOSE
Some data sources store their sample values in columns rather than in rows as is done in 
Pirouette. This may be required when using a spreadsheet such as Microsoft Excel (be-
fore 2007) which has a limit of 256 columns but your data have many more variables. If 
it is possible to modify the structure of the data in the source file to match that in the Pir-
ouette ASCII format, it is possible to read these data into Pirouette as their transpose (see 
Table 14.8, “Transposed ASCII with row labels,” on page 14-8).

Alternatively, Pirouette offers a Transpose function that will swap columns for rows.
• File > Transpose

Note that any subsets and computed results already prepared will be lost by this action (a 
message will warn you beforehand). Also, Pirouette will preserve the class and variable 
name prefixes (see page 14-8) in the event that you intend to revert to the original con-
figuration with another transpose action. 
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FINDING MISSING VALUES
Not every source of data generates completely rectangular data matrices, which you may 
notice after merging different data sets into Pirouette. In addition, you may encounter sit-
uations in which not all measurements can be made for every sample. When such data 
are entered into Pirouette’s spreadsheet, the missing values show up as asterisks.

For small data sets, it is easy to spot the missing values by simply looking at the table 
view of your data. However, if the data set is large so that scrolling around in the table to 
find the missing values would be tedious, you can locate them with a special function. 
With the table view active,
• Edit > Find Missing Values ...

which opens the following dialog box.

Figure 13.11
Finding Missing

Values dialog

The first 1000 missing values found will be listed, and the number of missing values pres-
ent will be shown at the top of the dialog. Each item in the list is labeled by its coordinates 
in the table, in the following syntax: 

Variable number:Variable name, Sample number:Sample name

You can sort this list in either variable or sample order. For example, it will be easier to 
find blocks of samples missing values in the same variable if grouped by variable. By 
clicking on an item in the list then on the Go To button, the table will be displayed with 
the selected cell in the upper left position in the window.

FILLING MISSING VALUES
Pirouette’s multivariate algorithms will not run on sets containing missing values. Sev-
eral ways to fill missing values are provided, including substituting the missing value 
with zeroes, with a number dependent on neighboring values, or with prescribed values. 
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The middle case involves three choices: filling with a vector’s mean, a vector’s median 
or interpolating from adjacent values. 

Note: Fill operations ignore the exclusion state of columns and rows.

Mean, Median, Interpolated Fill

If samples (rows) are selected, the mean or median is computed across the row containing 
the missing value (X values only), and interpolated values are derived from row neigh-
bors. When variables (columns) are selected, the analogous column fill occurs.

For example, in the data set shown below, there is one missing value.

Figure 13.12
An example of filling

missing data

Highlight either the corresponding row or column (not both as shown in the figure), then
• Select Fill from the Edit menu

• Select either Mean Fill, Median fill or Interpolated Fill from the submenu

The six possible results from these forms of missing-value filling are shown below.

Table 13.3
Filling missing value

shown in
Figure 13.12

The fill function has utility beyond replacing sporadic missing values. In creating new 
data columns, especially for categorical variables, fill can be used to insert a default val-
ue. For example, to create a new class variable column,
• Highlight an existing class variable column

• Select Insert from the Edit menu

A new column appears, in which all cells are initially filled with the missing value char-
acter as shown below.

Method  Result
Row-wise Mean Fill 694.25
Row-wise Median Fill 705.00
Row-wise Interpolation Fill 588.50
Column-wise Mean Fill 8.88
Column-wise Median Fill 9.50
Column-wise Interpolation Fill 10.00
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Figure 13.13
Filling a blank

column

Notice that the whole column remains selected and the first cell in the column is the ac-
tive or current cell, indicated by its thicker border.
• Type 1 then press Enter

To place 1 into the class variable for all of the remaining samples in this set,
• Select Fill from the Edit menu

• Choose By Interpolation

and the task is completed, as shown below.

Figure 13.14
Filling a new column

with a constant
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Fill by Value

On the other hand, you may sometimes wish to fill only a partial range of samples with 
the same value for which the above procedure would be too tedious. Thus,
• Select the column in which the missing values occur, AND

• Ctrl+Select the rows for which you wish to insert specific values

so that there are both rows and columns selected. 

Figure 13.15
Select rows and

columns with
missing values

When these selections have been prepared, 
• Select Fill from the Edit menu

• Choose With Value from the submenu

and a dialog box is presented requesting a value to be used as the fill value:

Figure 13.16
Fill with a value

dialog box

Note that only the missing values that fall on the intersections of selected columns and 
rows will be filled with the Fill With Value approach.
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Figure 13.17
Cells filled by value

Fill as Mask

A specialized fill is also available for use with certain transforms which use a mask row 
(see “Using a Mask” on page 4-11). This usually requires that you designate a row in 
your data set which you do not intend to be processed; it is usually excluded in the subsets 
you will use. Either insert a new row to be used as the mask or clear its contents entirely.
• Highlight the row to be used as the mask

• Ctrl+Select the columns for which the mask will be active

You can select the columns from the spreadsheet or by using the range tool in a line plot 
of the data. 

Figure 13.18
Select columns of a

Mask row
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Then,
• Select Fill from the Edit menu

• Choose As Mask from the submenu

All values in the mask row for columns which were highlighted will be filled with ones 
and all remaining missing values in the row will be filled with zeros.

Figure 13.19
Values filled by Mask

PCA Fill

Finally, one method invokes PCA, a familiar algorithm that estimates fill values based 
on surrounding data1. In this case, PCA is run on the submatrix composed of the inter-
section of the selected columns and rows, which must contain at least one missing value. 
The missing values are replaced with the column means before the algorithm is run. 
These values are then updated from the reconstructed submatrix via the usual PCA ap-
proach. The PCA decomposition is repeated and the missing values reconstructed until 
convergence to a stable solution is achieved or the maximum number of iterations is ex-
ceeded. Because the approach is based on the surrounding data, discontiguous row or col-
umn selections can produce undesirable or non-intuitive results.

Note: It is not necessary to select all rows or all columns. For example, if three rows are se-
lected, one of which contains the missing value, but no column is selected, you can still 
run the PCA Fill because Pirouette assumes that you meant to select all columns. Sim-
ilarly, after selecting only a few columns and no rows, PCA Fill will proceed, assuming 
all rows have been selected, thus used in the algorithm.

In either event, there must be at least 5 rows or 5 columns selected (or assumed to be 
selected) before you can run a PCA fill.
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Figure 13.20
Example of PCA Fill;

a) original data, b)
data with missing

value and small
number of selected

columns, c) data with
filled value

Class Variables

Class variables in Pirouette provide a basis for color mapping (see “Color Sequence” on 
page 10-18) and indicate known category assignments when running a classification al-
gorithm. For some regression algorithms, a class variable can be designated to control 
cross validation; see “Category validation (using the Active Class)” on page 5-21.

A data set may contain several class variables but only one can be the active class vari-
able. Moreover, it is sometimes desirable to have no class variable active.

ACTIVATING A CLASS VARIABLE
There are three ways to activate a class variable. One is via the HCA dendrogram; see 
“Creating Class Variables” on page 12-27. Another is accomplished from a table view of 
the raw data:
• Click on the desired class column index

• Choose Activate Class from the Edit menu (or use the Ctrl-K shortcut)

A third method uses the Active Class button in the status bar (see page 12-35).

See “Color Sequence” on page 10-18 and “Plot Colors” on page 12-34 for more informa-
tion on how color mapping works when a class variable is active.

USING CLASS VARIABLES IN ALGORITHMS
Classification algorithms (KNN, SIMCA and PLS-DA) require that you specify which 
category variable will be used during model creation. There are, however, different rules 
regarding the values allowed in a class variable. These rules are summarized in the fol-
lowing table (only integer values are allowed in a class variable).

a

b

c
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Table 13.4
Allowed content of
class variable used

in classification
algorithm

During prediction, there is no constraint on the values allowed. 

Creating Subsets from Tables

We seldom use all the collected data in the final multivariate investigation. Instead we 
may exclude some samples because they are of an under-represented type or because 
they were contaminated or otherwise deemed unfit. Pirouette provides a simple mecha-
nism for manipulating data in the pursuit of the optimal subset.

EXCLUDING DATA
Subsets can be created from either table or graphic views. Here we focus on subset cre-
ation from tables. For a discussion of subset creation from other views, see “Creating 
Subsets from a Graphic” on page 12-32.

Creating a subset from the spreadsheet is a three step procedure:
• Select (highlight) rows and/or columns that you want to exclude

• Select Create Exclude from the Edit menu

• Rename the subset with the Rename item in the Object menu

As an example, let’s create a subset using the ARCH.XLS data file. This data set contains 
two groups of data. The first 63 rows contain quarry data, while rows 64 to 75 contain 
information on artifacts. To put the quarry samples in a separate subset.
• Scroll down to where the quarry samples meet the arrowhead information (artifact 

samples start at row 64)

• Highlight the samples as shown in the figure below

Allowed Not allowed
KNN negative, zero, positive values missing values
SIMCA negative, positive values zero, missing values
PLS-DA negative, positive values zero, missing values
13–20



13 Tables: Creating Subsets from Tables
Figure 13.21
Artifact samples

highlighted

• Choose Create Exclude from the Edit menu (or use the Ctrl–E shortcut)

By excluding all artifact samples, we have created a subset called Unnamed1 which in-
cludes only the quarry samples.

INCLUDING DATA
When starting from the full data set, all rows and columns are already included. Including 
becomes necessary when one desires to re-include previously excluded data. Highlight-
ing excluded columns or rows and selecting Create Include reverses their inclusion sta-
tus, and generates a new subset which reflects these changes.

Note: To create an identical but distinct subset, select an already included row or column, then 
choose Create Include. No change in exclusion status will occur, but a new set will be 
created.

MODIFYING SUBSETS
To modify an existing subset, without creating a new one, proceed in the same manner 
as before, but instead of Create Exclude or Create Include, choose Exclude or Include. 
These actions implement the exclusions and inclusions but do not generate a new entity 
in the Object Manager. Instead the existing subset is merely updated.

If you modify a subset having algorithm results, those results and associated charts may 
become invalid. If so, those algorithm results will be discarded after a warning like the 
one shown below.
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Figure 13.22
Warning when a

subset with results is
modified

SAMPLE AND VARIABLE SELECTION
All of the methods above require user interaction to create the subsets. There are also al-
gorithmic methods to accomplish the same goal. “Subsets” on page 11-9 describe proce-
dures for making new subsets of a reduced number of samples or of variables.
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sk most users of data analysis software what their biggest complaint is, and the an-
swer invariably concerns the difficulties in moving data between different systems 
and applications. Unfortunately, for the user and the developer, data interchange 

formats have not yet been standardized. Even now, it is not uncommon to need two or 
more programs to reformat and convert data from one source such that it can be read by 
another application. In Pirouette, we try to make all aspects of data entry painless, from 
pasting into the spreadsheet from other applications to the importing and merging of files 
from a variety of sources.

Because data entry is such a vital consideration, the different sections of this chapter are 
illustrated using files included in the Pirouette package. See “Description of Example 
Files” in Chapter 9 for more information about these files.

There are two ways to prepare data for analysis in Pirouette: by typing data into the 
spreadsheet or by reading data in from an existing file. Manual data entry is described 
first; reading of existing data files is covered in the next sections. Finally, Pirouette‘s 
Merge facility is explained.

Entering New Data

For small data files, hand–entering data from within Pirouette is feasible. To generate a 
blank spreadsheet,
• Select New from the File menu

The cells just to the right of the row indices are for sample names while the cells just be-
low the column indices are for variable names; these name fields can contain text values. 
All other cells are data cells which can only contain numeric values.

A
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Figure 14.1
A blank Pirouette

spreadsheet

Initially, the first data cell is highlighted with a thicker border, indicating that it is the ac-
tive cell. If you begin typing, your keystrokes will appear in this cell. Figure 14.2 shows 
a portion of a spreadsheet to which data has been entered manually. As you enter data, 
default sample and variable names are generated as needed and a rectangular area is 
maintained, that is, incomplete data rows or columns are padded with asterisks (*), the 
missing value indicator. You are permitted to have missing values in a Pirouette spread-
sheet, but algorithms will be unable to process data vectors which include missing values. 
Dealing with missing values is discussed in “Filling Missing Values” on page 13-13.

Figure 14.2
A portion of an
spreadsheet in

progress

When you have finished hand entering data, you may wish to paste values from other ap-
plications into your spreadsheet. This topic is discussed in “Cut, Copy, Paste, and Clear” 
on page 13-9.
14–2



14 Data Input: Opening and Merging Existing Data Files
Opening and Merging Existing Data Files

To load data into Pirouette,
• Select Open Data from the File menu.

Figure 14.3
Open Data dialog

box

Using the dialog box shown above, you first navigate the directory structure to find the 
file you want and modify the File Type filter if necessary. Once the file you seek is dis-
played, click on its name and click on OK, or, alternatively, double-click on its name. 
The dialog box will close, and Object Manager will update to show that a file has been 
loaded. To see a tabular display of data in the file, drag the Full Data set icon to the Pir-
ouette workspace.

Because you may want to add data with new measurements to an existing file or blend 
two smaller files into one file, Pirouette includes a facility for merging two or more data 
files. To demonstrate this feature, we will merge the PALMPHYS.DAT file with another 
ASCII file called PALMCHRO.DAT. Both files contain data for the same group of sam-
ples, but PALMPHYS.DAT contains physical data while PALMCHRO.DAT contains 
chromatographic data. The new file created by merging these two files will include both 
the physical and chromatographic variables.

Pirouette allows you to choose whether to merge the data as new samples or new vari-
ables by providing two separate menu items. After opening PALMPHYS.DAT (which 
contains six variables),
• Select the Merge Variables item in the File menu
14–3



14 Data Input: Opening and Merging Existing Data Files
Figure 14.4
Merge Variables

dialog box

• Select Infometrix ASCII in the Files of Type pull down list

• Select PALMCHRO.DAT from the DATA subdirectory

• Click on Open

Drag the Full Data item onto the Pirouette workspace; the spreadsheet appears as in the 
figure below. Notice that the variables in the PALMCHRO.DAT file have been added to 
the right of the six variables in the PALMPHYS.DAT file, but the columns have been 
grayed (or excluded).

Figure 14.5
After merging data

file

Pirouette treats the merged file as a modification of the old data set. To keep a copy of 
the original unmerged data, choose the Save Data As option and assign a new name to 
the merged file; the original file will not be updated.

It is also possible to load a Pirouette file (that is, a file with a .PIR extension), from the 
Windows Explorer. Simply double-click on the file name or icon, and Pirouette will start, 
loading the file. If Pirouette is already running, a new instance of Pirouette will be initi-
ated.
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Alternatively, you can drag an appropriate data file from the Explorer window into the 
Pirouette window. This will load the file, replacing the current file which had already 
been loaded into Pirouette. If you had made changes to the current file, you will be asked 
if you want to save your changes before proceeding with opening the new file.

You may also drag more than one file into the Pirouette window, and all of the dragged 
files will be merged into a single data sheet in Pirouette. This is a quick way to start a 
Pirouette session if your data are originally created in single sample files, often the case 
with spectroscopic data.

Note: The order of loading of files following a drag and drop follows certain rules. See “Merging 
files from different directories” on page 18-2 for tips.

Common File Formats

Pirouette’s most common file formats are listed in the table below. The DAT and XLS 
entries have a few specifiers which are discussed in some detail.

Table 14.1
Common Pirouette

file types

ASCII FILES
An ASCII file must contain appropriate specifiers telling Pirouette which values are nu-
meric data, which are text (e.g., labels), and where the information should be placed in 
the Pirouette spreadsheet. There are a variety of configurations for the specifiers. Pirou-
ette accepts data alone, data with either sample or variable names and data with both sam-
ple and variable names. In addition, you can designate that variables be either of two 
special types: dependent or class.

In the simplest case, there are no specifiers. All that need be supplied is the raw data as 
shown in the following table. Samples are oriented as rows and variables as columns 
(e.g., there are five samples and four variables in the example. Either a space (or several 
spaces), a comma or a tab separates sample entries, and a carriage return (↵) marks the 
end of a sample. Generic labels will be created automatically when the ASCII file is read; 
these can be modified later manually. Pirouette reads samples until it reaches the end of 
file and assumes that each sample has the same number of variables.

Extension Format Description

.PIR2, 

.PIR

This is Pirouette’s native format, a binary format for fast 
loading – this will also store all objects calculated 
during a Pirouette session. 
PIR2 - From version 5.0 on this is the default format for 
Pirouette files.
PIR - This format is the legacy form for Pirouette files.

.DAT
An ASCII format, which can be generated by a number 
of word processors and editors – requires a few 
formatting specifiers, discussed below

.XLSX, 

.XLS

XLSX - the standard format created by the Microsoft 
Excel spreadsheet – requires a few formatting 
specifics, discussed below.
XLS - an older Microsoft Excel format (saved as Excel 
97-2003 workbook).
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Table 14.2
A simple ASCII file

If you wish to read an ASCII data set with variable and/or sample labels already in place, 
the file must contain a set of specifiers followed by the data itself. The specifiers are de-
noted by a # (pound sign) plus a letter which defines the type of information that follows. 
The specifiers themselves are not case–sensitive. As before, the entries within a row must 
be separated by spaces, tabs or commas. Allowed specifiers are:

#d Dimensionality of the data set. Format is “MxN” where M is the number of 
variables (i.e., columns) and N is the number of samples (rows), with no spaces 
between the characters.

#u Indicates that dimensionality is unknown. Requires that: the word “unspeci-
fied” must follow the #u directive; that #r or #p directives must follow; and, that 
#v directives must be used to indicate variables.

#c Tells Pirouette that column labels (i.e., variable names) are next

#r Row labels (i.e., sample names) are next

#p Same as row labels, except, strip path information from sample names

#v Tells Pirouette that data for one variable is next; the first “value” is interpret-
ed as the variable name

#s  Data for one sample is next; the first “value” is the sample name

The following nine tables give examples of permutations allowed by the Pirouette ASCII 
file read. The one you choose will depend on the organization of your data (sample–ori-
ented or variable–oriented files) and whether names are available. In the examples, the 
values starting with S or V imply that the value is either a sample or variable name.

The simplest ASCII file is a matrix without row or column labels as suggested above. As 
shown in Table 14.3, the dimension of the data set can also be added. This allows you to 
load a rectangular matrix in which the data for one sample do not fit on a single line. The 
previous format without the dimensionality specifier used a carriage return to signal end 
of line; this format avoids that limitation.

Table 14.3
ASCII file with

dimensions but no
labels

As before, in this basic format, it is assumed that the data is sample-oriented, (i.e., one 
sample’s information is tabulated completely before the tabulation of the next sample be-
gins).

To include variable names when sample names are unavailable, the following format 
may be best:

11 12 13 14 ↵
21 22 23 24 ↵
31 32 33 34 ↵
41 42 43 44 ↵
51 52 53 54 ↵

#d 4x5
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54
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Table 14.4
ASCII file with

grouped column
labels

If you want to include both sample names and variable names, put the variable (column) 
names first, and Pirouette will expect the data to be organized by samples. This format is 
demonstrated next.

Table 14.5
ASCII file with

grouped column and
row labels

Data can be also organized such that no variable names are supplied and the sample name 
is included with the sample’s data, as in the following table.

Table 14.6
ASCII file with

sample names in
each row

Adding variable names to the above format requires that they be grouped after the #c 
specifier:

Table 14.7
ASCII file adding

variable names

If your data is organized by variable rather than by sample, Pirouette will read the trans-
posed file whenever the #r specifier precedes the #c specifier, as shown in the next table. 
This means that values in rows in the ASCII file become values in columns in Pirouette. 

#d 4x5
#c V1 V2 V3 V4
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54

#d 4x5
#c V1 V2 V3 V4
#r S1 S2 S3 S4 S5
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54

#d 4x5
#s S1 11 12 13 14
#s S2 21 22 23 24
#s S3 31 32 33 34
#s S4 41 42 43 44
#s S5 51 52 53 54

#d 4x5
#c V1 V2 V3 V4
#s S1 11 12 13 14
#s S2 21 22 23 24
#s S3 31 32 33 34
#s S4 41 42 43 44
#s S5 51 52 53 54
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Note that the files in Table 14.8 and Table 14.6 will produce the same Pirouette spread-
sheet.

Table 14.8
Transposed ASCII

with row labels

Similarly, if you list the row (sample) names first then the variable names, the ASCII file 
read assumes that the data is organized by variables:

Table 14.9
Transposed ASCII

with column and row
labels

Data can also be organized such that the variable name is included with the variable’s 
data:

Table 14.10
Transposed ASCII

file organized by
variables

To add the sample names to the above format requires that they be grouped after the #r 
specifier:

Table 14.11
ASCII file adding

sample names

Up to this point all data values have been assumed to be independent variables. Markers 
can be added to the ASCII file to indicate the type of the variables or to define a missing 
value:

* preceding a variable name indicates a class variable

$ preceding a variable name indicates a dependent variable

M indicates a missing value for that data value

#d 4x5
#r S1 S2 S3 S4 S5
11 21 31 41 51
12 22 32 42 52
13 23 33 43 53
14 24 34 44 54

#d 4x5
#r S1 S2 S3 S4 S5
#c V1 V2 V3 V4
11 21 31 41 51
12 22 32 42 52
13 23 33 43 53
14 24 34 44 54

#d 4x5
#v V1 11 21 31 41 51
#v V2 12 22 32 42 52
#v V3 13 23 33 43 53
#v V4 14 24 34 44 54

#d 4x5
#r S1 S2 S3 S4 S5
#v V1 11 21 31 41 51
#v V2 12 22 32 42 52
#v V3 13 23 33 43 53
#v V4 14 24 34 44 54
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The next table shows a file with 3 samples, each with 4 variables. All sample and variable 
names are included. In addition, variable AA has been assigned as a class variable, and 
Sr as a dependent variable. There is one missing value.

Table 14.12
ASCII file with

dependent and class
variables

Note: When using #v or #s specifiers to indicate names and variable values or names and 
sample values, it is not necessary that every variable contain the #v plus name combi-
nation. The #v and name can be left off of the beginning of that variable’s data; it will still 
be read properly. Similarly, the #s and name can be left off of the beginning of the list of 
the data values for samples. When reading in ASCII data, be sure that the dimensionality 
specifier accurately reflects the number of samples and variables.

Note: You cannot have spaces in variable or sample names because the space is interpreted 
as a field delimiter. Instead, use a character, such as the underscore, to imply a space 
in a name.

EXCEL FILES
Importing Excel files is a simple procedure because, with few exceptions, Pirouette im-
ports them directly. Both formats follow a pattern similar to ASCII files, giving you the 
ability to import data with or without labels. However, it is possible to read in Excel files 
with labels for samples but not for variables and vice versa. In every instance, the first 
cell, i.e., row 1 and column 1, should be left blank.

Pirouette assumes that data is in a rectangular format and that variables are stored col-
umn–wise and samples are stored row–wise. Also, variable names can only occupy the 
first row of the spreadsheet beginning with cell B1—the variable labels are at the top of 
the columns containing the values for the variable they represent. Sample names must be 
located in the first column beginning in cell A2, and correspond to sample data across the 
row. Labels will be treated as text when read into Pirouette.

If you wish to read in an Excel data file without sample or variable names, the corre-
sponding column (A) or row (1) must be left blank. Additional Excel file specifications 
follow:
• Use an M (or m) in all cells with missing values. Missing values will have cells filled 

with asterisks (*) in the Pirouette spreadsheet.

• A variable will be read and assigned as a class variable if the variable label in row 1 
is preceded by an asterisk. For example, “*Process” would be read in as a class vari-
able.

• A variable will be read and assigned as a dependent variable if the variable label in 
row 1 is preceded by a dollar sign. For example, “$Octane” would be read as a de-
pendent variable.

#D 4x3

#C *AA Ca Ba $Sr
#S SA1 12 16 15 18
#S SA2 14 19 11 M
#S SA3 14 11 17 19
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Other File Formats

All remaining file formats currently supported by Pirouette are described in this section. 
The origin and purpose of each format are described, and, where necessary, tips on the 
use of the originating software are given to make the conversion as smooth as possible. 
Be aware that as new file read modules are developed, we make them available in future 
releases and/or place them on the Infometrix web site.

Note that the chromatography peak data formats are mostly present in two forms: one 
will read peak areas; the other will read peak heights. You can choose to save your data 
including one or the other or both; be sure that the data type is present when you then use 
Pirouette to read the data.

Agilent ChemStation

*.ch

The Agilent (formerly Hewlett Packard) ChemStation line of chromatographs use a com-
mon file format for GCs, LCs and other instruments. The actual data file has .CH as the 
extension, but is embedded within a directory which carries the name of the sample. And, 
the directory name itself has an extension .D. Other data, including peak reports and other 
sample parameters, are stored as individual files in the same sample directory.

Note: Although employing the same name, this format is not to be confused with the Chem-
Station format used with the mass spectrometer systems. These use similar .D sample 
directories but the GC-MS data are stored in a .MS file.

ASD Indico Pro

*.asd

The Indico Pro format is used by ASD for their LabSpec and QualitySpec analyzers, as 
well as their FieldSpec 3 and Pro version instruments. These are binary files.

AIA or ANDI

*.cdf

Variations include:
All Peak Areas or Heights

AIA Named Peak Areas or Heights

AIA Raw Data

AIA Data with RT Markers

In its simplest form, the AIA Standard is a “generic system for analytical data inter-
change and storage.” Adopted by members of the Analytical Instruments Association 
(AIA), it is in the process of being implemented in all major chromatography software 
systems.

In Pirouette, the AIA format comprises two categories of information common to chro-
matographic data: Raw Data and Final Results. The Raw Data format will extract the ac-
tual chromatographic profile from a .CDF file. The Data with RT Markers format will 
14–10
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14 Data Input: Other File Formats
also load the whole chromatographic profile but, in addition, will search the AIA file for 
named peaks and enter the corresponding scan times of these peaks into Y variable col-
umns. This is a convenience for those needing to pretreat chromatographic data by align-
ment (see “Align” on page 4-22).

The latter category includes the “amounts and identities (if determinable) of each com-
ponent in a sample.” The Pirouette converter allows the Final Results to be extracted as 
either the peak areas or the peak heights; you also can choose whether to extract all the 
peak values or only those for which a “name” has been applied by the chromatographic 
software.

The user of an AIA-supporting chromatography data system must save the analysis re-
sults in an AIA-type file. The extension of this file should be .CDF, which is used by Pir-
ouette as the file filter. The means to save such a file will vary with the software; it may 
be an integral part of the software or it may be a part of a separate file converter.

Analect FT-IR

*.asf

Analect makes a high-resolution FTIR spectrophotometer whose files can be read by Pir-
ouette. Spectra are stored as individual files with a .ASF extension and are written into 
binary format files.

Brimrose AOTF

*.dat

Brimrose makes an AOTF spectrophotometer known as the Luminar 2000. Brimrose 
data files are written in binary format and may contain single or multiple spectra. The 
spectra may be the raw spectra or they may be a transformation of the raw data (e.g., de-
rivative spectra).

Thermo Scientific GRAMS

*.spc

GRAMS (and its sister programs Spectra Calc and Lab Calc) are software packages 
mainly intended for the spectroscopist. The GRAMS file structure is a binary format 
which can contain either single or multiple spectra (or chromatograms). These files can 
be read directly by Pirouette. In addition, through its setup procedure, GRAMS can con-
vert many other formats to its own.

Guided Wave Models 300, 310 and 412

*.asc, *.*ed

The Guided Wave Model 412 is a process near infrared spectrophotometer. Spectra col-
lected by the M412 can be stored as single spectra files or as spectral files that include 
lab values. The latter files can have extension .updated or .completed. The *.*ED filter 
will allow both of these file types to be displayed simultaneously. Data collected from 
the older Models 300 and 310 can be displayed with the *.ASC filter.
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Agilent (Hewlett Packard) Model 8453

*.wav

The Model 8453 is a UV/VIS diode array spectrophotometer, collecting data from 190 
to 1100 nm. Model 8453 data spectra are written into ASCII format as single spectrum 
files.

JCAMP-DX Infrared Spectroscopy

*.dx, *.jdx

JCAMP is an attempt at a standardized spectroscopy data interchange format. The gener-
ic nature of the format allows it to be used for any data type, but its primary use has been 
in IR spectroscopy. Most major IR vendors support JCAMP by allowing the user to ex-
port to a .DX file. However, variations in the implementation of the JCAMP standard do 
exist, and it is possible that Pirouette may not recognize a particular variant. At present, 
Pirouette is designed to read valid formats up to version 4.24.

LT Industries Model 1200

*.dat

The Model 1200 is an infrared spectrophotometer sold by LT Industries. Model 1200 
files are stored in binary format and can contain multiple spectra in a single file. If the 
.ING file, containing dependent variable information, is also present, these data will be 
appended to the Pirouette spreadsheet.

NWA Quality Analyst

*.nqa

Northwest Analytical makes software for MSPC. Data files can be exported from their 
package as a custom text format file and imported into Pirouette for analysis.

FOSS NIRSystems NSAS

*.da
NSAS data files are written in binary format and may contain as many spectra as there is
room for on the disk. The spectra may be the raw spectra or they may be a transformation 
of the raw data (e.g., derivative spectra). If the .CN file, containing dependent variablein-
formation, is also present, these data will be appended to the Pirouette spreadsheet.

Perkin-Elmer Spectrum for Windows

*.sp

Perkin Elmer makes several spectrophotometers which can save either single IR spectra 
and/or single interferograms in an ASCII file. The Pirouette file server reads older and 
newer versions of spectral files saved in this format.
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Bruker OPUS

*.0

The OPUS format developed by Bruker will save various types of spectra. The default 
extension is “.0”, which is what is shown in the Pirouette file filter. Bruker will save sub-
sequent file copies with increments in the extension (.1, .2, etc.). To load these into Pir-
ouette, select the OPUS file type, change the File Name filter from *.0 to *.*, and hit 
enter to list the additional spectra.

AIT PioNIR

*.pdf

PIONIR is a near-infrared spectrometer that provides on-line monitoring of liquid 
streams in refining and petrochemical processes.
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irouette provides several options for handling results generated within the pro-
gram, including printing, capturing of graphic images, and saving data files and/or 
computed results and saving multivariate models. The various functions are all ac-

cessed from the File menu and are described in this chapter.

Printing

Pirouette output can be printed in two different ways. It can either be sent directly to your 
printer or it can be saved in a file for printing later. Choose the Print Setup item on the 
File menu to select and configure a printer. The printers available from Print Setup are 
those that have been previously installed on your system.

Be sure that your destination printer is powered on and on line before you begin to print. 
To print the contents of the current chart window,
• Select Print from the File menu (or use the Ctrl-P shortcut)

P
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Figure 15.1
The print dialog box

The example print dialog box shown above allows you to specify the number of copies 
desired and whether you want to print to a file.

Capturing Chart Windows

To capture graphics in a file for incorporation into a report or other document, you can 
copy the image into the Windows clipboard as a bitmap or as a metafile. To use this fea-
ture,
• Click on the window you wish to capture to make it current

• Select Copy from the Edit menu, to capture a bitmap (TIFF format), or

• Select Copy Special/To Clipboard, from the Edit menu, to capture a metafile

Any Pirouette chart can be captured in this manner if its window is first made current. 
This is true, however, only for chart windows containing a single plot; chart windows 
containing an array of subplots can only be captured as bitmaps. 

With this copy command, the window contents will be copied. If you also want to retain 
the window’s title bar, hold the shift key down and select the copy menu item.

A window with a data table can be copied as a bitmap as well. First, however, make sure 
that no cells are highlighted because the copy command puts the contents of highlighted 
cells on the clipboard; see “Cut, Copy, Paste, and Clear” on page 13-9. You can insure 
that no cells are highlighted by clicking in an empty cell, outside of the data range or just 
by insuring that the active cell is not in the viewing window when you do the copy. Note 
that a bitmap copy of a data table will include only that portion of the table which is dis-
played in the window.

When choosing to copy a metafile, you will copy the graphic as an Enhanced metafile 
(EMF which has a richer set of drawing entities compared to the older WMF format).
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After the copy, you can paste the image into a document open in another application. You 
can also save your image to a file with the Clipboard Viewer accessory or a third party 
utility such as SnagIt, which saves images in a number of common graphic formats. The 
clipboard retains the copied image until the next copy operation.

Alternatively, you can save the EMF to file.
• Choose Edit > Copy Special > To File

and a dialog will be present for you to name the file and choose its destination.

Figure 15.2
Saving an EMF
format graphic

A default name will be provided (such as plot000.emf), otherwise you should enter a 
meaningful name to help keep track of results.

Saving Files

Pirouette supports several output formats. 
• Pirouette

• ASCII

• Excel

• Flat ASCII

• Galactic SPC

• ChemStation CH

• AIA/ANDI CDF

Pirouette files are saved in either PIR2 format or as legacy PIR files. Unless you are sup-
porting applications using older versions of Pirouette, we suggest staying with the more 
capable PIR2 format. Saving data in the Pirouette format stores not only the raw data but 
also subsets, algorithm results and models in a single file accessible only by Pirouette or 
another Infometrix package or client. 

The Excel and ASCII output formats store just the raw data, preserving the variable type 
(i.e., independent, dependent, and class) and names of samples and variables. Data saved 
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in the Flat ASCII format contain only the rectangular matrix of data; no sample or vari-
able names are retained. This format facilitates loading of data into math packages such 
as Matlab.

Note: Scripts for Matlab are available for loading from and saving to the Pirouette ASCII 
(*.DAT) format. 

Finally, Pirouette data can be stored in either of the two most common data interchange 
formats, .SPC and .CDF. The SPC files are stored in the multifile format, that is, all spec-
tra are stored in a single file. On the other hand, the CDF files are stored as single sample 
files. To avoid confusion, the saved files have a serialized suffix added to each name be-
fore the extension.

Computed results are not stored together with the raw data in any of these formats except 
the Pirouette binary format. However, most computed objects can be saved independent-
ly into its own separate file (see below).

Note: Older versions of Excel allow loading only 256 columns into a spreadsheet. Thus, any 
file saved in this format and containing more than 256 variables will be truncated when 
read into the program.

SAVING DATA
To save the raw data (and all existing subsets and results) in the case of a Pirouette binary 
format),
• Choose Save Data As from the File menu

Figure 15.3
Save Data As dialog

box

The dialog box which will open lets you specify the name of the file to be saved, the file 
type, and its location:
• Navigate to the file’s destination directory and drive

• Set the output format via Save as type

• Type a file name or click on an already existing name

• Click on OK
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A suggested file name will be supplied, based on the name of the file currently in use.

Note: Because the output format is determined by the Type of File setting and not the exten-
sion assigned to the file, you can override the default extensions supplied in Pirouette. 
However, it may later be difficult to determine the format of the file.

SAVING RESULTS
To save just the included data in an exclusion set or an algorithm result,
• Choose Save Object from the File menu

The dialog box shown below is similar to the Save Data As dialog box in Figure 15.3, 
except that the suggested name will identify the specified object.

Figure 15.4
Save Objects dialog

box

• Navigate to the desired directory and drive

• Set the output format via the File Type

• Accept the suggested file name, type a new file name or click on an already existing 
name

• Click on OK

Objects saved in an ASCII format can be read into any text editor. Objects saved in Excel 
format can be imported into spreadsheets that support the XLS format, where you may 
want to perform some special processing or plotting. Because Pirouette can read these 
formats, you can load or merge the object file back into Pirouette itself.

Note: Objects reloaded into Pirouette are treated as raw data. The object’s original identity is 
lost; it is merely a table of numbers. The stored row and column names may help you 
deduce the source of the data but a descriptive file name is advised.

It is also possible to save data into an AIA format. Because this format is found in many 
chromatographic data systems, Pirouette results could be loaded into a chromatographic 
system for further processing. This is useful for data which has been aligned by the Pir-
ouette transform of the same name (see “Align” on page 4-22).

The AIA format only permits a single sample per file, thus when Pirouette saves a multi-
sample data object to this format, it will serialize the resulting file names by adding a suf-
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fix to the name you supply, where the suffix is a serial number starting at X2 (each new 
file save restarts the serial number at X2), where X represents the number of padding ze-
ros. Zeros are added only to make each name unique and alphabetizable. Thus, if there 
are 123 samples, then there would be padded leading zeros as needed to make the suffix 
contain 3 digits.

Saving Models

All algorithms in Pirouette except HCA produce models. PCA, an exploratory algorithm, 
produces models which are then used to compare future data by projection into the prin-
cipal component space of a training set of data. A classification model (resulting from 
either KNN, SIMCA, or PLS-DA) is used to predict a future sample’s category. This may 
be as simple as classifying samples as good or bad or as complex as a model created for 
the Centers for Disease Control which categorizes over thirty types of mycobacteria, in-
cluding M. tuberculosis. Regression models (produced by PCR or PLS) typically predict 
a property or concentration, such as the octane number of gasoline from an analysis of 
NIR spectra. PLS-DA is a hybrid: it uses the core PLS algorithm to perform classifica-
tion.

PIROUETTE MODELS
Whenever a modeling algorithm runs, an algorithm-linked model is produced. The model 
persists until the algorithm run that generated it is deleted. The model can be unlinked 
from the algorithm run and stored into a file. Saving a model in Pirouette format allows 
you to open it later and make the prediction in either Pirouette or another Infometrix 
product such as InStep.To save a model,
• Choose the Save Model menu item in the File menu

which opens a dialog box like that shown next.
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Figure 15.5
Selecting a Model to

save

As you highlight one from a list of available models, information about it appears in the 
Model Info box (on the right side of the dialog box).
• Click on the Save Selection button

• Navigate to the desired directory and drive

• Set the Model Type (if a choice is available)

• Type a file name or click on an already existing name

• Click on Save

The dialog box will appear as shown in Figure 15.6 below.
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Figure 15.6
Save Model dialog

box

Note: InStep and Pirouette cannot open .MDL or .MD2 type models so save in these ASCII 
formats only if you plan to later access the model with custom software or a macro. See 
the next section for information on ASCII Models. 

Note that there are several formats available. 

Figure 15.7
List of model types

Each of these model types serves a different purpose, as noted below.

Table 15.1
Pirouette model

formats

 Name Extension Use

Pirouette *.PMF
Predictions within Pirouette version 2.0 
or later; and with InStep versions 2.0 
and newer. All model types.

ASCII *.MDL (see below). 
PLS and PCR models only.

ASCII 
enhanced *.MD2

Similar to ASCII, with extra information 
on new transforms. PLS, PCR, KNN 
and SIMCA models contain additional 
component pieces (see below)

Galactic *.CAL Emulates SpectraCalc/LabCalc 
calibration files. PLS and PCR models.

Guided 
Wave *.PGW Emulates Guide Wave calibration files. 

PLS models only.
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ASCII MODELS
Relying on Pirouette or InStep to make predictions keeps life simple. However, some-
times model creation occurs in Pirouette but predictions must occur outside the Pirouette 
or InStep environment. PCR and PLS models consist mostly of a regression vector and 
data processing parameters. Choose the .MDL file type in the Save Models dialog box to 
save a regression model in an ASCII format. This rudimentary format does not support 
all of Pirouette’s transforms. Thus, its utility is limited to predicting a y value for models 
that use the so-called legacy transforms, those available in DOS Pirouette.

The ASCII model includes the name of the file from which the model was derived, trans-
forms, preprocessing options, offset and factor vectors (for preprocessing) and, finally, 
the regression vector. If more than one dependent variable was included, each dependent 
variable model is listed, in sequence. Table 15.2 shows a PLS ASCII model file created 
from DAIRY.DAT, which is furnished with Pirouette.

Table 15.2
An ASCII model file,

.MDL format

Beginning with Pirouette 3.0, enhanced ASCII formats (.MD2) for PLS and PCR became 
available. They contain information necessary to implement non-legacy transform meth-
ods like MSC, DivideBy, etc.

For the current version (and dating to Pirouette version 4.0), the enhanced ASCII ver-
sions for PLS and PCR were significantly modified to permit the computation of several 
outlier diagnostics and the application of OSC. The following section provides guidance 
to 3rd party developers attempting to implement prediction from these enhanced ASCII 
models. The following table uses the same data as Table 15.2 but shows additional items.

Calibration Method: PLS
Original data file:      DAIRY
Number of dependent variables: 2
Number of variables: 6
Transforms: Smoothing(5), Normalize (100.00)
Scaling: Autoscale
Validation: None
Number of Leave Out: 1

X-Offset ·· 2.32764e+00 ·· 3.37298e+00 ·· 8.97816e+00 ·· 1.91064e+00 ·· 3.18654e+01 
·· 4.13826e+01

X-Factor ·· 6.06414e+00 ·· 6.03093e+00 ·· 5.04562e+00 ·· 3.10448e+00 ·· 7.88556e–01 
·· 1.33903e+00

Y-Offset ·· 4.17006e+00 ·· 2.74836e+01
Y-Factor ·· 1.07526e+00 ·· 7.70650e–01

Dependent variable: Fat
Range: 3.87000e+01 to 4.42000e+01
Optimal number of components: 5
Standard error: 5.54626e–01
Regression vector ·· –3.29700e+00 ·· –2.05223e+00 ·· –1.16270e+00 ·· 2.57833e+00 ·· –

2.63031e+00 ·· –2.43671e+00

Dependent variable: Moisture
Range: 2.60000e+01 to 3.20000e+01
Optimal number of components: 5
Standard error: 4.56424e–01
Regression vector ·· 3.313987e+00 ·· 2.08165e+00 ·· 1.29630e+00 ·· –1.10915e+00 ·· –

2.74743e+00 ·· 2.77295e+00
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15 Output of Results: Saving Models
Table 15.3
An enhanced ASCII

PLS model file, .MD2
format

In Table 15.4 the PLS model file contents are related to quantities previously described 
in this user guide.

Calibration Method: PLS
Original data file: DAIRY.DAT
Number of dependent variables: 2
Number of variables: 14
Number of model samples: 140
Transforms: MSC
Preprocessing: Mean-center
Validation: Cross(1)
Number of OSC components: 1

Inclusion bitmap: 1 ·· 1 ·· 1 ·· 1 ·· 1 ·· 1 ·· 1 ·· 0 ·· 0 ·· 0 ·· 0 ·· 0 ·· 0 ·· 0
X-Offset: 5.35939e-02 ·· 1.74324e-01 ·· 2.72141e-01 ·· 3.96485e-01 ·· 8.83203e-01 ·· 9.89484e-01 ·· 

1.02481e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

X-Factor: 1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 
1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 1.00000e+00 ·· 
1.00000e+00 ·· 1.00000e+00

Y-Offset: 4.17006e+01 ·· 2.74836e+01
Y-Factor: 1.00000e+00 ·· 1.00000e+00

Dependent variable: Fat
Range: 3.87000e+01 to 4.42000e+01
Optimal number of components: 1
Standard error: 4.25595e-01
Model residual: 3.02518e-03
Regression vector: -3.33699e+01 ·· -8.50063e+01 ·· 5.36245e+01 ·· 1.09024e+02 ·· -2.40354e+01 ·· -

2.00827e+01 ·· -1.53298e-01 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00

Loading1: -2.15033e-01 ·· -5.47774e-01 ·· 3.45552e-01 ·· 7.02539e-01 ·· -1.54882e-01 ·· -1.29411e-01 ·· -
9.87842e-04 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

Model scores mean: -3.36357e-09
Scores covariance inverse: 2.46277e+04
OSC Weight1: -1.25501e-01 ·· 1.29257e-01 ·· -4.78947e-01 ·· 4.64790e-01 ·· 4.85006e-01 ·· 3.31443e-01 ·· 

-8.06044e-01 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

OSC Loading1: -1.54591e-01 ·· -2.43830e-01 ·· -7.37004e-02 ·· 5.39107e-01 ·· 5.26820e-01 ·· -6.94291e-03 
·· -5.86861e-01 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

Dependent variable: Moisture
Range: 2.60000e+01 to 3.20000e+01
Optimal number of components: 2
Standard error: 3.21741e-01
Model residual: 2.79886e-04
Regression vector: 2.05246e+00 ·· 7.37562e+01 ·· -2.25461e+01 ·· -7.86170e+01 ·· 8.77612e+00 ·· 

1.06260e+01 ·· 5.95180e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00

Loading1: 7.89303e-02 ·· 6.35015e-01 ·· -2.51649e-01 ·· -7.09890e-01 ·· 1.04451e-01 ·· 1.03979e-01 ·· 
3.91596e-02 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

Loading2: -6.82458e-01 ·· 3.50742e-01 ·· 5.42922e-01 ·· -6.72590e-04 ·· -2.84742e-01 ·· -9.06361e-02 ·· 
1.64841e-01 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

Model scores mean: 9.18631e-09 ·· -2.52530e-09
Scores covariance inverse: 2.44658e+04 ·· 2.16515e+03 ·· 2.16515e+03 ·· 5.01398e+04
OSC Weight1: -3.86225e-01 ·· 1.71878e-01 ·· 1.66720e-02 ·· 1.74333e-01 ·· 7.59311e-01 ·· -1.84931e-02 ·· 

-7.17478e-01 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

OSC Loading1: -3.21133e-01 ·· -1.20419e-01 ·· 1.03344e-02 ·· 5.34355e-01 ·· 5.08441e-01 ·· -3.07851e-02 
·· -5.80792e-01 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 0.00000e+00 ·· 
0.00000e+00 ·· 0.00000e+00

MSC Ideal: 5.34334e-02 ·· 1.74245e-01 ·· 2.72282e-01 ·· 3.96690e-01 ·· 8.83137e-01 ·· 9.89438e-01 ·· 
1.02482e+00 ·· 9.43797e-01 ·· 8.83227e-01 ·· 8.02673e-01 ·· 6.16289e-01 ·· 4.67190e-01 ·· 2.29000e-
01 ·· 3.04064e-01
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Table 15.4
Decoding an

enhanced ASCII PLS
model

Calculations with an ASCII model
The following discussion assumes a single sample vector with m elements, xunk, and 
model with a single Y.
1. Load the file and compose matrices from the vectors stored in it.

At minimum, assemble the k loading vectors, which contain m elements, into a matrix L 
with m rows and k columns. If the Number of OSC Components is greater than 0, two 
other matrices, Wosc and Losc, must also be assembled in the same manner as L. Both 
OSC matrices contain m rows and kosc columns.

The Scores covariance inverse field is followed by k*k values. These must be shaped into 
a k by k matrix in order to compute the Mahalanobis distance of the unknown. The first 
k values comprise the first row of the matrix, the next k values comprise the second row, 
etc.
2. Apply transform(s)

This step is necessary only if the Transforms field value contains something besides 
None; in which case the methods and parameters are listed. Note that some transforms 
require the entire x vector (e.g., derivatives) while others operate from only included 

Model Field Comments Symbol
Number of dependent 
variables

# of Ys in the model nY

Number Of Variables # of independent (that is, X) variables m
Number Of Model 
Samples

# of samples in model’s training set nmodel

Number Of OSC 
Components

# of OSC components retained in the model kosc

Inclusion bitmap A m element vector of 1s and 0s; 1s 
indicate included X variables

X-Offset, X-Factor Two m element scaling vectors for the x 
block

Y-Offset, Y-Factor Two nY element scaling vectors for the y 
block

Optimal Number Of 
Components

# of PLS components retained in the model k

Regression Vector An m element vector β
Loading1, ...Loadingk The k vectors comprise L, the loadings 

matrix
L

OSC Weight1, ...OSC 
Weightkosc

The kosc vectors comprise Wosc, the matrix 
of OSC weights

Wosc

OSC Loading1, ...OSC 
Loadingtkosc

The kosc vectors comprise Losc, the matrix 
of OSC loadings

Losc

Model scores mean A k element vector containing the means of 
the training scores  

Model residual The sum of sum of squares of the training 
set’s unscaled X residuals 

ESSmodel

Scores covariance 
inverse

A square matrix with k rows and columns S-1

t
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variables. Code is not given here for each transform; see “Transforms” on page 4-10 for 
details. If more than one method is listed, they must be applied in the order listed.

Note: Some transform methods are simple to implement after a careful reading of this manual. 
Others are more challenging. Forewarned is forearmed!

3. Apply bitmap

Multiply element-by-element the values in xunk and the Inclusion bitmap. This essential-
ly zeroes out excluded X variables in subsequent computations using full-width vectors 
and matrix.
4. Preprocess 

Subtract X_Offset element-by-element from xunk, then do an element-by-element divi-
sion of the difference by X_Factor. This produces the preprocessed (or scaled) xunk. 
5. Orthogonalize

This step is necessary only if OSC was included as part of the PLS calibration, that is, if 
kosc > 0. If so, the preprocessed Xunk must be orthogonalized before prediction: 

xunk = xunk - (xunk * Wosc)* Losc
T

6. Compute Y

The scaled predicted Y value is computed from xunk and the regression vector β:

yscaled = xunk * βT

To get an unscaled value, multiply yscaled by Y_Factor and add Y_Offset. This essentially 
undoes the preprocessing.
7. Compute Mahalanobis Distance

The Mahalanobis distance (MD) depends on the mean -centered prediction scores which 
can be computed from L, the xunk vector from step 6, and from .

tunk = (xunk * L) - 

The Scores covariance inverse assembled in step 1 is now necessary:

MD = tunk * S-1* tunk
T

To compute the MD threshold, consult a table of Chi squared values, specifying the num-
ber of model factors k and a prediction probability.
8. F Ratio 

To compute the F Ratio, first compute e, the X residuals vector.

eunk = xunk - xunk * L * LT 

Because the PLS model contains the unscaled model residual, the unknown’s X residu-
als must also be unscaled by multiplying the vector element-by element by X_Factor. 
Then each element of the unscaled X residuals is squared and summed to get a scalar, the 
unknown’s error sum of squares, ESSunk. The desired quantity, the F ratio, is the ratio of 
this value to the average model residual:

F = ESSunk / (ESSmodel / nmodel)

The F ratio probability, P, can then derived from F. Fprob is a function which calculates 
the probability value from an F value and two degrees of freedom parameters:

t

t
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15 Output of Results: References
P = 1 - Fprob(F,df1,df2)

where df1= 1 and df2 = nmodel - k. Information on computing an F-distribution probabil-
ity function1 can be found in many standard statistical and numerical analysis texts.

The F Ratio threshold may be found by consulting a table of F values for the specified 
prediction probability. The lookup depends on two degrees of freedom: df1 = 1 and df2 
= nmodel - k. If the model contains a preprocessing option that involves subtracting a 
mean and nmodel is less than or equal to m, df2 = nmodel - k - 1.

Note: Coding strategies for KNN and SIMCA enhanced ASCII models are not detailed here. 
For information about using these models to make predictions, contact Infometrix.

GALACTIC MODELS
For PLS and PCR, models can be saved in a format compatible with SpectraCalc/Lab-
Calc. Not all Pirouette generated PLS and PCR models can be saved in the .CAL format. 
For example, a Galactic model must specify a preprocessing setting of either mean-cen-
ter, autoscale, or variance scale. Moreover, it cannot have any transforms, all x variable 
names must be numeric, and the number of OSC components must be 0. Pirouette models 
with multiple Ys produce a series of single-Y Galactic model files.

Note: As of Pirouette v. 4 CAL models saved from validated PLS and PCR runs contain the 
validated ESS in the model residual field. Previously the unvalidated ESS was written 
out.

References
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ipes (Cambridge University Press, Cambridge, 1986), p. 169.
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his chapter lists every menu item in Pirouette. A brief description and a reference 
to a more focused discussion is supplied. About half of Pirouette‘s menu items are 
found in virtually all Windows programs. Whenever possible, we adhere to the 

standards established by Microsoft and Apple in their Windows and Macintosh product 
lines. Therefore, common functions are discussed briefly, elaborating only where a spe-
cial behavior exists within Pirouette.

Menu Features and Shortcuts

Menus can be accessed either with the mouse or from the keyboard. Keyboard access is 
discussed below. An ellipsis following a menu item means that a dialog box will be dis-
played when the option is selected. Any menu item followed by the triangle symbol ( ) 
has an associated pull–down submenu.

Using the keyboard, you can open a menu or select an item from an open menu by press-
ing the underlined letter associated with the item while holding down the Alt key. The 
Alt key is optional for selecting an item from an open menu.

In addition, single stroke keyboard equivalents allow you to access a menu item without 
first opening its menu. To execute the keyboard shortcut, press the key combination dis-
played to the right of the item. Shortcuts are listed in the following table. Shortcut avail-
ability in the menus are context-sensitive and show up when an object can benefit from 
their use.

T
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16 Pirouette Reference: Menu Features and Shortcuts
Table 16.1
Keyboard Shortcuts

The next table includes function key assignments for selecting interaction tools which al-
low you to change plot view types.

Table 16.2
Tool and View

Shortcuts

Menu Menu item Equivalent
File Open Data Ctrl+D

Save Data Ctrl+S
Open Model Ctrl+M
Print Ctrl+P
Quit Alt+F4

Edit Undo Ctrl+Z
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Del
Activate Class Ctrl+K
Exclude Ctrl+E
Include Ctrl+I

Process Run Ctrl+R
Predict Ctrl+Y

Display Selector F12
Zoom Current Plot Enter
Unzoom Current Plot Ctrl+Enter
Limits Ctrl+B
Labels Ctrl+L

Objects Find Ctrl+F
Rename Ctrl+N

Windows Cascade Shift+F5
Tile Shift+F4
Close Window Ctrl+W

Help Contents Ctrl+H

To Choose Press
Interaction Tools Pointer F1

Spinner F2
ID F3
Zoom F4
Range F5

View Types Table F6
3D Scatter Plot F7
2D Scatter Plot F8
Multiplot F9
Line Plot F10
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16 Pirouette Reference: File Menu
File Menu

The File menu provides access to the different actions which deal with manipulating data 
files and results. This includes creating new files, opening and saving files and models, 
saving objects and printing.

Figure 16.1
File menu

NEW
When the New menu item is selected, a blank spreadsheet is displayed as shown below.

Figure 16.2
A new spreadsheet
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16 Pirouette Reference: File Menu
Selecting New without first saving existing data triggers the following dialog box.

Figure 16.3
Warning dialog for

unsaved results

OPEN DATA
The dialog box displayed when you select the Open Data item in the File menu is shown 
below.

Figure 16.4
Open Data dialog

box

Changing the directory and drive is accomplished according to standard Windows oper-
ations, but the Files of Type field deserves some explanation. Setting this filter deter-
mines the file format expected by Pirouette. If the file specified in the File Name box is 
not in the format specified by Files of Type, the open operation will fail and the message 
shown below will be displayed.

Figure 16.5
Dialog shown after to

file load fails
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If you are uncertain about a file’s format, use the *.* filter, which forces Pirouette to try 
all known formats.

ASCII and Excel files must be in a form understandable by Pirouette. See “ASCII Files” 
on page 14-5 and “Excel Files” on page 14-9 for more details.

SAVE DATA
Save Data updates the current file with any changes made since the last save. If you orig-
inally opened a non–Pirouette file, Save Data opens the Save Data As dialog box dis-
cussed in the next section. You can also Save Data with the Save ribbon button.

SAVE DATA AS
Save Data As presents a dialog box which allows you to save your current data and re-
sults, if appropriate, to a new file name. You can also change the file type, drive and di-
rectory.

Figure 16.6
Save Data As dialog

box

With the Pirouette format, all existing subsets and algorithm results are saved in the file; 
other formats retain only raw data. To reiterate, saving to a spreadsheet or ASCII file for-
mat creates a file which can be opened by other applications but does not contain any sub-
sets or algorithm results generated during the Pirouette session. Only the PIR file type 
stores this kind of information. See also “Saving Files” on page 15-3.

Note: Versions of spreadsheet applications (before 2007) allow only 256 columns. The Pirou-
ette format, on the other hand, saves files with a virtually unlimited number of columns. 
Be aware that if your data has more than 256 columns and you open a saved Excel-for-
mat file in an older spreadsheet application, the data may be truncated.

MERGE SAMPLES, MERGE VARIABLES
Pirouette’s Merge functions enable you to consolidate a series of files after first opening 
a file. The Merge functions will present a list box (see, for example, Figure 16.7) where 
you can select a series of files. All selected files must be in the same subdirectory. To 
select more than one file, use Shift–click for a contiguous range of files or Ctrl–click for 
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noncontiguous files. Use Merge Samples to append data (as new samples) to the bottom 
of the spreadsheet; use Merge Variables to append data (as new variables) to the right of 
the current spreadsheet.

Note: When multiple samples are merged, they will be loaded into Pirouette in the order shown 
in the directory listing of the Merge dialog, whether sorted by Name, Size or Date Mod-
ified. The order shown in the File name list is ignored. See also “Merging files from dif-
ferent directories” on page 18-2.

Figure 16.7
Merge Samples

dialog box

Pirouette does not examine sample or variable names when merging. Thus, when merg-
ing samples, if different variable names are present in the original and merged files, the 
existing column names are retained. Similarly, when merging variables, if different sam-
ples names are present in the original and merged files, the existing row names are re-
tained.

The dimensionality of the file(s) need not match, e.g., a merged file can have fewer or 
more samples or variables than the original file; missing value characters (*) fill the extra 
cells required to maintain a rectangular data area.

For more information on merging, see “Opening and Merging Existing Data Files” on 
page 14-3.

Note: Many spectroscopy data systems store each sample (spectrum) in a single file. Merging 
many samples into a single file is often the first step in a multivariate investigation.

SAVE OBJECT(S)
Besides saving a session’s entire results in a Pirouette file, you can also save individual 
objects in their own files. The Save Objects dialog box is shown below.
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Figure 16.8
Save Objects dialog

box

As with Save Data As, you choose the output format with the File Type filter. Save Ob-
ject works on the active window. In the dialog box, supply an output file name. Note that 
the suggested name is based on the object’s definition and is presented in the File name 
field. You can keep the suggested name or type an alternate. If the Object Manager win-
dow is current, the Save Object(s) menu entry is grayed. See “Saving Results” on page 
15-5 for more information.

TRANSPOSE
If the data you have loaded into Pirouette has samples in columns, you can easily trans-
pose the data into a more standard row-oriented format with this menu item. See “Trans-
pose” on page 13-12 for more details.

OPEN MODEL
After a modeling algorithm finishes, its associated model is available for predictions. 
Once saved, this model can be used to make predictions in future Pirouette sessions. The 
Open Model dialog box is shown below. Only files containing Pirouette-generated mod-
els (those with a PMF extension) are displayed.

Note: With Pirouette 4.0 and earlier, the model format differed and MOD was the default ex-
tension for Pirouette models rather than PMF. You may still open some older models 
with the MOD extension by manually typing the file name with the extension .MOD.
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Figure 16.9
Open Model dialog

box

Note: If you open a model before opening a data file, you will have to reload the model. Simi-
larly, whenever a new file is opened, any previously opened models are lost. Remember 
to always open the data file first.

SAVE MODEL
The ability to save models to disk is one of Pirouette’s special capabilities. These models 
can be used in subsequent predictions for any compatible data file. Once a modeling al-
gorithm has been run, its model can be saved via the Save Model dialog box shown in 
the next figure. A model file can contain models derived from PCA, KNN, SIMCA, CLS, 
PLS, PCR, PLS-DA, LWR or ALS. All existing models appear in the Models box. De-
tails specific to each are displayed in the Model Info box when a model name is high-
lighted.
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Figure 16.10
Save Model dialog

box

Click on Save Selection and a standard Windows File save dialog will be presented with 
a suggested model name. Note that PLS and PCR models can also be saved in text format 
by selecting the ASCII Model Type and in a format used by Galactic’s SpectraCalc and 
GRAMS packages. ASCII models, which cannot be opened by Pirouette, are discussed 
in “ASCII Models” on page 15-9.

Note: Just as with the Pirouette data file formats, new model formats are made available from 
time-to-time. Check the web site (see page 18-14) for the latest information.

PRINT
To print the contents of the current chart window, you will be shown a Print dialog box 
like that in the accompanying figure. You can select the printer, set the number of copies 
and/or print to a file.
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Figure 16.11
Print dialog box

PRINT SETUP
Use the Print Setup dialog box to change the destination printer, paper size and paper 
tray. For further information on Print Setup, refer to your Windows manual.

Figure 16.12
Print Setup dialog

box
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RECENT FILES
Rather than navigating through the Open Data dialog box to find your data file, if it was 
used recently, its name will appear in the Recent Files list.

Figure 16.13
Recent Files list

EXIT
To quit Pirouette,
• Select Exit from the File menu or use the Alt-F4 keyboard shortcut.

If you have modified your file since the last save operation, a warning dialog box like 
that shown in Figure 16.3 is displayed. If you choose Yes and the original format was 
DAT or format other than PIR, the Save Data dialog box opens. If the original format was 
PIR, the file is saved with the same name.

Edit Menu

Edit menu items primarily apply to the Pirouette table view of data, although some func-
tions also affect plots. The Edit menu is shown below.
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Figure 16.14
Edit menu

Note: The Edit menu is context-sensitive; its contents change according to the window which 
is currently active.

Because several Edit menu items operate on single or multiple columns and/or rows (as 
opposed to individual cells), they are grayed unless an entire row or column is selected 
(i.e., highlighted). Individual or multiple columns or rows can be selected, a particularly 
useful feature for inserting additional rows or columns or creating an exclusion set. See 
“Selecting in Lists and Tables” on page 10-1 for instructions on multiple selections.

Because both columns and rows can be highlighted and because they may be currently 
off screen, you should clear all highlighting before starting an edit so that you do not in-
advertently perform the edit on these hidden cells as well. Clicking once on a cell clears 
any previous row or column selection. On the other hand, you may want to make a series 
of discontiguous selections using the Ctrl+click mechanism. In this situation it is possible 
that there will be selected cells out of the visible range of the table.

An editing action may invalidate existing algorithm results. In this case, a warning like 
that shown below is displayed. Continuing the edit will cause algorithm results and any 
related charts to be removed.
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Figure 16.15
Warning message

following edits

UNDO
In the Notes window, the information which is initially presented is a brief summary of 
the parameters set for the algorithm. You may wish to edit this list or add your own com-
ments. After making any additions or deletions, you can change your mind and revert to 
the text present before your changes were made by using the Undo menu item.

An Undo capability has not been implemented for other actions in Pirouette.

CUT
Cut places selected cells, rows or columns onto the clipboard for later pasting. The cut 
region is indicated by the so-called marching ants, a box with moving dashed borders. 
When the paste is effected, the cut region is filled with the missing value indicator (*). If 
a second cut is performed prior to pasting the contents of the first cut, the values extracted 
by the second cut operation replaces that from the first cut on the clipboard. To abort a 
cut (and get rid of those pesky marching ants), press the Esc key before pasting.

To cut a range of data from the spreadsheet,
• Highlight a range of cells or one or more contiguous rows or columns

• Select Cut from the Edit menu

When rows or columns are cut, default names are generated for the cut region after the 
subsequent paste is completed. If a discontinuous set of rows and/or columns is high-
lighted (using Ctrl-click), only the last selection is cut. Algorithm results cannot be cut.

COPY
Like Cut, Copy also places selected cells, rows or columns onto the clipboard for later 
pasting, as well as any text from the Notes window. Use Copy if you need to duplicate 
data in a different section of the spreadsheet. Like Cut, the marching ants denote the copy 
region, the subsequent paste applies to the target of the most recent copy, and only the 
last selection is copied when discontiguous rows and/or columns are highlighted.

To copy a range of data from the spreadsheet,
• Highlight a range of cells or one or more contiguous rows or columns

• Select Copy from the Edit menu

You can also Copy data in result tables to the clipboard for transfer to other applications.

The copy command is also available when a chart window is current. In this case, a bit-
map image is transferred to the clipboard. The Copy action does not include the window 
title bar in the image; however, you may do so by holding the Shift key down when se-
lecting Copy.

In addition to the copying of bitmaps, it is also possible to copy a graphic as a metafile 
or vector-based image. When a graphic is in the front window, a Copy Special menu item 
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is enabled in the Edit menu, giving you the choice of saving an Enhanced metafile to ei-
ther the clipboard or to a file. Saving to a file presents a standard File Save dialog box so 
that you can name the saved image.

PASTE
When Paste is selected from the Edit menu, the contents of the clipboard are immediately 
placed in the spreadsheet beginning at the active cell. If you have not previously copied 
or cut data from the spreadsheet, Paste is disabled. For additional rules governing the size 
of valid paste areas, see “Cut, Copy, Paste, and Clear” on page 13-9.

Paste is also available for the Notes window. If you have relevant text created in another 
application, for example, or simply another Notes window inside Pirouette, copy that text 
to the clipboard, then paste it into the Notes window with which you are working. Upon 
saving the Pirouette file, that text will be retained as a part of the results from the corre-
sponding algorithm.

CLEAR
Clear immediately removes all values in the selected range. Cleared information is not 
copied to the clipboard and is therefore irretrievable. Cells are filled with the missing val-
ue indicator (*). Cleared row or column labels are not removed but default names are 
generated.

To clear a range of data,
• Select a range of cells or one or more contiguous rows or columns

• Select the Clear item from the Edit menu

If a discontiguous set of rows and/or columns is highlighted (using Ctrl-click), all selec-
tions will be cleared. Algorithm results cannot be cleared.

INSERT
Insert adds new rows or columns to a spreadsheet. The menu item is available only when 
entire rows or columns are highlighted so clicking on the row or column index is neces-
sary. You cannot insert into algorithm results.

To insert rows or columns,
• Select one or several rows and/or columns

• Select Insert from the Edit menu

New rows and/or columns are inserted just before (i.e., above or to the left of) the rows 
and/or columns selected. When multiple rows or columns are selected, the same number 
of rows and/or columns are inserted. The rows and/or columns need not be contiguous. 
New columns will be of the same variable type as the column to the right. Insert is pre-
vented if columns of different types are selected.

DELETE
Rather than excluding rows or columns (discussed in “Create Exclude/Exclude” on page 
16-15), Delete permanently removes them. The menu item is available only when entire 
rows or columns are highlighted so clicking on the row or column index is necessary. 
You cannot delete from algorithm results.

To delete rows or columns,
• Select one or several rows and/or columns
16–14



16 Pirouette Reference: Edit Menu
• Select Delete from the Edit menu

The rows and/or columns need not be contiguous.

ACTIVATE CLASS
The ability to activate a class variable provides for:
• Color mapping to sample points and traces, based on their class value

• Indicating categories to classification algorithms

• Automatic creation of new class variables from the HCA dendrogram

When initially displaying a scatter or line plot of samples, the color of points and traces 
are mapped by row index to the Color Sequence (discussed on page 10-18). However, if 
your data includes a class variable, it can provide a color mapping scheme for sample-
oriented scatter and line plots. To trigger this mapping,
• Click on the column index of a class variable in a data spreadsheet

• Select Activate Class from the Edit menu

The colors of plotted sample points or traces correspond to their class values but those 
associated with variables are unaffected.

Another method for activating a class variable uses the Active Class button in the Status 
Bar. See page 12-35 for details.

A new class variable can be both created and activated from the HCA dendrogram; see 
“Creating Class Variables” on page 12-27. A message at the bottom of the Pirouette 
screen shows name of the active class variable (if any).

NO CLASS
To deactivate a class variable and cancel the associated color mapping,
• Select No Class from the Edit menu, or

• Click the Active Class button and choose None from the list

CREATE EXCLUDE/EXCLUDE
Only included rows and columns are used in the processing by Pirouette’s algorithms. To 
exclude from a table view and generate a new subset having fewer rows and/or columns,
• Select one or several rows and/or columns

• Select Create Exclude from the Edit menu

The highlighted rows and/or columns change to gray (if that is the current Excluded 
Background Color set in View Preferences, see page 10-7) and the title of the spreadsheet 
becomes Unnamed-N. This new exclusion set also appears in the Object Manager. If you 
Create Exclude from a table view of an algorithm result, the result window is unchanged 
but the Object Manager is updated to show that a new subset has been created.

To exclude additional rows and/or columns but accumulate these changes without gen-
erating a new subset,
• Select one or several rows and/or columns

• Select Exclude from the Edit menu

It is sometimes more convenient to perform exclusions from a graphic than from the 
spreadsheet. The Create Exclude item is available when points are selected in dendro-
grams and scatter plots of both data and results. However, you cannot choose the Exclude 
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item for results graphics (this would invalidate the algorithm results). For more informa-
tion, see “Creating Subsets from a Graphic” on page 12-32. For a general discussion of 
subset creation, see “Creating Subsets from Tables” on page 13-20.

CREATE INCLUDE/INCLUDE
To include from a table view of data and generate a new subset,
• Select one or several previously excluded rows and/or columns

• Select Create Include from the Edit menu

The highlighted rows and/or columns will no longer be gray, the title of the spreadsheet 
window changes to Unnamed-N and the Object Manager gets a new set entry.

To include additional rows and/or columns but accumulate these changes without gener-
ating a new subset,
• Select one or several previously excluded rows and/or columns

• Select Include from the Edit menu

Note: To create a duplicate of the current subset from its table view, highlight an already in-
cluded row or column and then select Include.

FIND MISSING VALUES
Data sets may be missing values because some data were simply not collected or because 
a merge operation created ranges of missing value to keep the matrix rectangular. If it is 
not obvious where the missing values fall, this utility can help you locate them.
• Select Find Missing Values from the Edit menu

This action will present the following dialog box.

Figure 16.16
Find Missing Values

dialog
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You can sort the list either in order of variables (the default view) or by sample. Click on 
an item in the list, then on the Go To button to return to the spreadsheet, and the selected 
row and column will be positioned in the upper left of the table.

GO TO
It is sometimes awkward to scroll to a desired location in a large table, particularly in data 
sets with large numbers of samples and/or variables. To move to a specific cell immedi-
ately,
• Select Go To from the Edit menu

The dialog box which is shown provides several ways to specify the destination.

Figure 16.17
Go To dialog box

The most common approach is:
• Scroll through either list until the row/column name or number appears

• Click on its name

If you know the row and/or column name,
• Type in the full Row or Column name (not case sensitive)

The Selection Type radio button switches between lists of Names and Numbers (i.e., col-
umn or row indices). After you click on OK, the spreadsheet is redisplayed such that the 
designated cell is at the top–left corner of the window.

Although data for class and dependent variables are in a different portion of the spread-
sheet, Go To operates in the same manner. The only difference is that when Numbers are 
selected, you must type a C or a Y first to access the corresponding column numbers.

COLUMN TYPE
Pirouette variables can be of three different types: independent, dependent, or class. To 
assign a different type, highlight that column, and select Column Type, which opens the 
submenu shown below. Select the new type for the column(s) you have highlighted.
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Figure 16.18
Column Type

submenu

The column is moved to the end of the variable block region of the type chosen from the 
submenu. For further discussion on the Column Type command, see “Changing Variable 
Types” on page 13-10.

Note: Class values must be integers. Whenever you change an X or Y variable to a class vari-
able, a warning is put up reminding you that the values in the column will be truncated.

SORT
To order your data,
• Highlight at least two rows or columns to be sorted

• Select Sort from the Edit menu

Figure 16.19
Sort dialog box

The dialog box allows you to sort ascending or descending and by value or name. The 
sort key is that row or column which contains the active cell. See “Sorting Data” on page 
13-11 for a sort example.

FILL
Some data sets may have missing values (see also “Find Missing Values” on page 16-
16). With Pirouette you can fill missing values in several ways. Fill works on single or 
multiple columns or rows. First highlight the applicable region, then select Fill which 
opens the submenu shown in Figure 16.20.
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Figure 16.20
Fill submenu

The Fill submenu lists seven options:

With Zeros Missing values in the highlighted region are filled with zero.

With Mean Missing values in the highlighted region are filled with column means (if col-
umns are selected) or with row means (if rows are selected).

By Interpolation Missing values in the highlighted region are filled with an interpolated 
value. When a row is selected, row values on either side of the missing value are 
used. When a column is selected, column values above and below the missing 
value are used. A linear interpolation is applied in the case of multiple contiguous 
missing values. If the missing value is at the edge, the first (last) value replaces 
the missing value(s).

With Median Missing values in the highlighted region are filled with column medians (if 
columns are selected) or with row medians (if rows are selected).

By PCA Iterative PCA modeling and prediction of the missing values is run until conver-
gence when the final predictions are retained to substitute the missing values. If 
a sub-range of columns and/or rows is selected, the algorithm will be run on only 
those values.

With Value Missing values can be filled with a specific value. Only the values at the in-
tersection of simultaneously highlighted rows and columns are filled.

As Mask Missing values in a highlighted row are filled with either a one or zero. Ones are 
inserted for highlighted columns, otherwise zeros are inserted.

For more information, see “Filling Missing Values” on page 13-13.

NEW SET
When the Object Manager is the frontmost window, an additional item is enabled in the 
Edit menu, called New Set. Selecting this option will create, and display, a new subset in 
which all rows and columns are included. It performs the same function as drag and drop 
of the Disk icon in the Object Manager (see “Subsets” on page 11-9).

Process Menu

This discussion focuses on the steps needed to run Pirouette algorithms. For detailed de-
scriptions of the algorithms, refer to the appropriate chapters in Part II  Guide to Multi-
variate Analysis.

The Process menu is the heart of Pirouette; from there algorithms and predictions are 
configured and initiated.
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Figure 16.21
Process menu

RUN
Running algorithms is accomplished via the Run item on the Process menu which opens 
the Run Configure dialog box shown in Figure 16.22. To configure an analysis,
1. Click on an entry in the Exclusion Set box

2. Click on an entry in the Algorithm box

3. Choose any needed Transforms

4. Click on Run

To configure more than one analysis, repeat steps 1 - 3, then
• Click on Add

Continue adding subset-algorithm pairs to the list as needed. When your batch list is 
complete and you want to begin executing algorithms,
• Click on Run

Figure 16.22
Run Configure

dialog box

Algorithm Options
Each algorithm has default options which you may want to change. The following dis-
cussion lists those options but does not discuss why one setting is preferred over another. 
Each preprocessing setting is defined in “Preprocessing” on page 4-26. Algorithm-ori-
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ented chapters in Part II  Guide to Multivariate Analysis also offer advice on algorithm 
options.

To establish an algorithm configuration,
• Highlight the Algorithm

• Change the various settings shown in the Algorithm Options box

• Select and configure zero, one or more Transforms

• Highlight an Exclusion set

• Click on Add or Run

After a particular algorithm’s options are changed, the settings stay in effect until you 
change them again. However, if you change the dimensionality of the data set by deleting 
or excluding samples or variables, valid ranges for options may be impacted.

HCA

The HCA options are shown below. When Run Configure is first opened, HCA is select-
ed by default.

Figure 16.23
HCA options

Choices for the HCA options are listed in the following table. See “Linkage Method 
Definitions” on page 5-2 for a detailed discussion of this topic.

Table 16.3
HCA Choices

Option Default Choices
Preprocessing None None

 Autoscale
Mean Center
Variance Scale
Range Scale
Pareto 

Distance Metric Euclidean Euclidean
Euclidean (no init)

Linkage Method Single Single
Centroid
Complete
Incremental
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PCA Options

The PCA options are shown in the next figure.

Figure 16.24
PCA options

Choices for the PCA options are listed below. See “Varimax Rotation” on page 5-28 for 
a detailed discussion of the rotation choices. For a discussion of the Validation Method 
and Leave-out # choices, see “Validation-Based Criteria” on page 7-6. Computation of 
the threshold for the Q statistic will be computed only if the option is checked.

Table 16.4
PCA Choices

Median
Group Average
Flexible

Dendrogram Orientation Samples Samples
Variables

Option Default Choices

Option Default Choices
Preprocessing None None

Autoscale
Mean Center
Variance Scale
Range Scale
Pareto

Rotation None None
Raw
Normal
Weighted
Weighted-Normal

Maximum Factors Varies, 
up to 10

Varies, up to lesser of # of 
samples and variables
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KNN Options

The KNN options are shown in the next figure.

Figure 16.25
KNN options

Choices for the KNN options are listed in the following table. For a detailed discussion 
of the algorithm, see “Mathematical Background” on page 6-3.

Table 16.5
KNN Choices

Max # Rotated Factors Varies, 
up to 10

Varies, up to lesser of # of 
samples and variables

Validation Method None None
Cross
Step

Leave-out # 1 1 up to one half the 
number of samples

Compute Q threshold Off Off, On
Enable Calibration 
Transfer Off Off, On

Option Default Choices

Option Default Choices
Preprocessing None None

Autoscale

Mean Center

Variance Scale

Range Scale

Pareto

Maximum Neighbors Varies, up to 10 Varies, up to lesser of # 
of samples and variables

Enable Calibration 
Transfer Off Off, On
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SIMCA Options

The SIMCA options are shown below.

Figure 16.26
SIMCA options

Choices for the SIMCA options are listed in the table below. For a detailed discussion of 
the algorithm, see “Mathematical Background” on page 6-16.

Table 16.6
SIMCA Choices

PCR and PLS Options

The PCR and PLS options are identical and are shown in the next figure.

Option Default Choices
Preprocessing None None

Autoscale

Mean Center

Variance Scale

Range Scale

Pareto

Scope Local Local

Global

Maximum Factors Varies
Varies (determined by class 
with minimum number of 
variables/samples)

Probability Threshold 0.95 0.01 to 0.9999
Enable Calibration 
Transfer Off Off, On
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Figure 16.27
PCR (and PLS)

options

Choices for the two algorithms are listed in the table below. For a detailed discussion of 
both algorithms, see “Mathematical Background” on page 7-3. See “Model Validation” 
on page 5-19 for a discussion of the Validation Method and Leave-out # choices.

Table 16.7
PCR and PLS

Choices

CLS options

Options for CLS differ from those of PCR and PLS because model optimization is based 
not on the number of factors, rather on the form of the baseline. 

Option Default Choices
Preprocessing None None

Autoscale

Mean Center

Variance Scale

Range Scale

Pareto

Validation Method None None

Cross

Step

Active Class

Leave-out # 1 1 up to one half the 
number of samples

Maximum Factors Varies, up to 10 Varies, up to lesser of # of 
samples and variables

# OSC 
Components 0 0 - 3

Enable Calibration 
Transfer Off Off, On
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Figure 16.28
CLS options

Choices for the CLS algorithm are listed in the following table. For a detailed discussion 
of the algorithms, see “Mathematical Background” on page 7-44. See “Model Valida-
tion” on page 5-19 for a discussion of the Validation Method and Leave-out # choices.

Table 16.8
CLS Choices

ALS options

Most of the ALS options concern the constraints applied during the least squares optimi-
zation.

Option Default Choices
Probability Threshold 0.95 0.01 to 0.9999
Validation Method None None

Cross
Step

Leave-out # 1 1 up to one half the 
number of samples

Enable Calibration 
Transfer Off Off, On
16–26



16 Pirouette Reference: Process Menu
Figure 16.29
ALS options

Choices for the various ALS options are shown in the following table.

Table 16.9
ALS Choices

PLS-DA Options

Options for the PLS-DA algorithm are a blend of those from PLS and the classification 
algorithms.

Option Default Choices
Preprocessing None None

Autoscale

Mean Center

Variance Scale

Range Scale

Pareto

Maximum #of sources Varies, up to 10 Varies, up to lesser of # of 
samples and variables

Non-negativity off off, on
Unimodality off off, on
Closure None None, Amounts, Profiles
Initial estimates, from Rows Rows, Columns
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Figure 16.30
PLS-DA options

Choices for the various options available to PLS-DA are tabulated below.

Table 16.10
PLS-DA choices

Transforms
The Transform dialog is shown in the next figure. Any transform or combination of trans-
forms appearing in the Selected box when the Add or Run button is clicked will be ap-
plied to the independent variables before preprocessing and algorithm execution.

Option Default Choices
Preprocessing None None

Autoscale

Mean Center

Variance Scale

Range Scale

Pareto

Validation Method None None

Cross

Step

Leave-out # 1 1 up to one half the 
number of samples

Maximum Factors Varies, up to 10 Varies, up to lesser of # of 
samples and variables

Class Variable First category 
in table

List of all available 
categories

# OSC 
Components 0 0 to 3
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Figure 16.31
Transform options

To select a transform,
• Highlight the desired transform in the Available list

• Click on >>

De-selecting a transformation works the same way:
• Highlight the desired transform in the Selected list

• Click on <<

You can also double-click on the transform name to move it to the opposite list. Any 
number of transformations may be selected, in any order, although an individual trans-
form cannot be selected twice. Transforms are applied in the order selected. Some trans-
forms can be customized. Possible choices are shown in Table 16.11; however, it is not 
necessary to use the options (such as Use mask). For more information about each choice, 
see “Transforms” on page 4-10.
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Table 16.11
Transform choices

Note: To see the effect of a transform on the independent variables, run the XFORM algorithm 
with the transform(s) of interest. If you prefer to work only with transformed data, you can 
save the transformed result using Save Objects and then later merge any class and de-
pendent variables.

Run Status
After a batch of analyses has been set to processing, a dialog box is presented with a list 
of all the processing to be done.

Transform Option Default Choices
Derivative # of Points 5 5 to 95 (pop-up list)
Smooth # of Points 5 5 to 95 (pop-up list)
Log 10 none
Multiply Factor 1.000
Normalize Factor 100.00
Subtract Value 0.000

at Var # 1 any excluded variable
Baseline 
correct

Subtract 
sample 1 row number

Linear fit use mask
Quadratic fit use mask
Cubic fit use mask

Divide by Sample 2-norm use mask
Sample 1-norm use mask
Sample max use mask
Sample range use mask
at Var # 1 variable number
Sample vector 1 row number
Subset mean

MSC use mask
SNV none
Align Window size 5 0, or 5 to 0.5 xVariablesTotal

Align to row # 1 row number
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Figure 16.32
The Run Status

dialog box

If a process cannot complete, it will abort and the next process will start. When all the 
analyses are finished, the dialog will disappear unless there was an aborted process. You 
can determine the cause of an abort by double-clicking on the abort message or clicking 
on the Details button. For a list of possible causes for aborts, see “Processing Errors” on 
page 18-5.

If you have chosen to batch several processes at once, but then decide to terminate the 
batch before it is completed, you can force an abort by clicking on the Abort Next button 
in the dialog box. The processing will stop after the current process is complete, and the 
remaining processes will not run.

By default, no results are shown after processing is complete. Evidence of completion is 
the existence of folders of results shown in the Object Manager. You can ask Pirouette 
to display results on completion via a preference (see “Number of Plot Windows” on 
page 10-17), but keep in mind that when many algorithms are in a batch, it can take a 
noticeable amount of time, with large data sets, for all plots to be presented. After all pro-
cessing is complete, you can still display results for any process by dragging the appro-
priate icons from the Object Manager.

PREDICT
A multivariate model is created whenever PCA, KNN, SIMCA, CLS, PCR, PLS, PLS-
DA, LWR or ALS is run. Making predictions with these models is accomplished via the 
Predict item on the Process menu which opens the Predict Configure dialog box shown 
in next.
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Figure 16.33
Predict Configure

dialog box

To configure a prediction,
• Highlight an Exclusion Set

• Highlight a Model

• Click on Run (or Add to make batch of predictions)

Note: If there are variable exclusions in a subset, its name will be greyed in the Exclusion Set 
list. To be available for predictions a subset must have all variables included.

If the total number of variables in the subset does not match the number of variables 
used in the training set from which the model was created, Predict will not run, and an 
Alert message will be displayed.

When you highlight a model, information about it is displayed in the Model Info box. For 
more explanation on how to create a model and run a prediction, refer to the respective 
chapter (for example, see “Making a SIMCA Prediction” on page 6-26 and “Making a 
PCR/PLS Prediction” on page 7-31).

Note: Support for very old models (version 2.03, 1997 and older) was discontinued. You may 
load the model, but when you click on Model Info in the Configure Prediction dialog, this 
message is shown: “This model version (2.03) is no longer supported.”

SELECT SAMPLES
Selecting this menu item brings up the Sample Select dialog.
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Figure 16.34
Sample Select dialog

The options available for performing sample selection are described in the following ta-
ble.

Table 16.12
Sample selection

options

SELECT VARIABLES
Selecting this menu item brings up the Variable Select dialog.

Parameter Default Choices
Exclusion Set Full Data Any subset
Algorithm [persistent] Kennard-Stone

Orthogonal Leverage
PCA Hypergrid
Random

Class Variable None Any class variable
Create complement set Off Off, On (Random only)
Limit on Number of 
Selections [persistent] Percent, 1 to 99

Number, 1 to 1 less than total number of 
samples
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Figure 16.35
Variable Select

dialog

The options available for performing variable selection are described in the following ta-
ble.

Table 16.13
Variable selection

options

Display Menu

The Display menu, shown below, provides Pirouette users with tools for modifying the 
appearance of charts.

Parameter Default Choices
Exclusion Set Full Data Any subset
Algorithm [persistent] Standard Deviation Rank

Fisher Weight
Variance Weight

Class Variable*
[* not available for STR; 
required for FW, VW]

None Any class variable

Limit on Number of 
Selections [persistent] Percent, 1 to 99

Number, 1 to 1 less than total number of 
variables
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Figure 16.36
Display menu items

POINT LABELS
Pirouette allows you to label the points of the current 2D or 3D plot with either a number 
(the row index) or name (the sample label). When the Point Labels item is selected, a sub-
menu with three options is deployed.

Figure 16.37
Point Labels

submenu

• None removes labels from the plot

• Index labels each point with its index number

• Name labels each point with a name

• Class labels each point with its Class value

The number or name displayed depends on the object plotted. Typically, it corresponds 
to a row/column number or name. The current label type is grayed.

AXIS LABELS
When the Axis Labels item is selected, a submenu with two options is deployed.

Figure 16.38
Axis Label submenu

• Number labels the axes with row or column indices or numbers

• Name labels the axes with row or column names (e.g., discrete names or wavelength 
values)

PLOT SCALING
When the Plot Scaling item is selected, a submenu with four options is deployed.

For Line plots, additional items:
16–35



16 Pirouette Reference: Display Menu
Figure 16.39
Plot Scaling

submenu

• Range Scaling plots data scaled to the range on each axis

• Data Scaling plots data scaled to the maximum axis range (for the currently dis-
played axes)

• All Points bases the range calculation on all points in the data set

• Included Points bases the range calculation only on points included in the subset

ZOOM CURRENT PLOT
To view a subplot so that it fills the window, use one of the techniques listed in 
Table 12.4, “Zooming and Unzooming,” on page 12-20, which includes the Zoom Cur-
rent Plot item in the Display menu.

UNZOOM CURRENT PLOT
To shrink a plot to its subplot array format, use one of the techniques listed in Table 12.4, 
“Zooming and Unzooming,” on page 12-20, which includes the Unzoom Current Plot 
item in the Display menu.

TOOLS
When a graphical view of data or results is displayed, several interaction tools are en-
abled. Choosing an item from the Tools submenu is equivalent to clicking on the corre-
sponding ribbon button. The function of each tool is described briefly below.

Figure 16.40
Tools submenu

• Pointer Tool: selects points in a dendrogram or scatter plot (see “Selecting Points” 
on page 12-5) or selects lines in a line plot (see “Selecting Lines” on page 12-17)

• Spinner Tool: rotates 3D plots in any direction (see “Spinning a 3D Plot” on page 12-
9)

• ID Tool: displays row/column number and name for the nearest point or trace (see 
“Identifying Points” on page 12-7 and “Identifying Lines” on page 12-15)

• Magnify Tool: magnifies a portion of a line or scatter plot (see “Magnifying Regions” 
on page 12-8)

• Range Tool: allows graphical selection of variables in line plots (see “Selecting 
Ranges” on page 12-18)
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VIEWS
You can change the plot type of the current chart using either a ribbon button (listed in 
Table 10.5, “Ribbon buttons for view switching,” on page 10-4) or an item in the Views 
submenu. 

Figure 16.41
Views submenu

SELECTOR
This item allows you to specify which items will show in a plot; a Selector ribbon button 
is also available (see “Ribbon Buttons” on page 10-3). For a discussion of each type of 
Selector dialog see page 12-5 for 2D and 3D scatter plots, page 12-14 for line plots, and 
page 12-21 for multiplots.

Figure 16.42
Selector dialog box

for 3D plots

CLOAK
The Cloak item is shown when 2D or 3D scatter plot or line plot views are active; it is 
equivalent to the corresponding ribbon button discussed in “Cloaking” on page 12-8.

REDRAW
Redraw is shown in the Display menu, only for Line plots. Its action is equivalent to 
clicking on the Redrawn button in the ribbon, discussed in “Redrawing Traces” on page 
12-19.

LIMITS
Line plots can be zoomed graphically or by selecting this menu item. See “Magnifying 
Regions” on page 12-15 for details.

LABELS
The Labels item toggles the visibility of labels and is shown when 2D or 3D scatter plot 
views are active; it is equivalent to the corresponding ribbon button discussed in “Point 
Labels” on page 12-7.
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Objects Menu

Most of your interaction with the Object Manager is via the mouse; however, a few func-
tions are available from the Objects menu, shown below.

Figure 16.43
Objects menu

Find and Rename must be accessed via the menu or the corresponding shortcut. The re-
maining three items can be invoked via a ribbon button or mouse action.

FIND
When only one or two algorithms have been run, it is easy to locate their results in the 
Object Manager. However, if you have run many algorithms on a variety of subsets, it 
may be difficult to find a particular Object Manager entity.

To locate a specific object,
• Select Find from the Objects menu

• Type a (case sensitive) object name in the box under Find What

• Click on Find

Figure 16.44
Find dialog box

To highlight all objects whose names contain the given text string,
• Type in the text string

• Check the All Occurrences box

• Click on Select
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16 Pirouette Reference: Windows Menu
You can use the Find operation to locate all scores plots, for example, to make a set of 
plots at once for intercomparisons. The object must be visible in the Object Manager to 
be selectable.

RENAME
You can rename subsets and folders containing algorithm results; all other object names 
are fixed and not editable. To change a subset or algorithm results folder name,
• Highlight the object in the Object Manager

• Select Rename from the Objects menu

The following figure shows the dialog box which will open. Type in a new name and 
click on OK. The new name will appear in the Object Manager and in the title of related 
charts.

Figure 16.45
Rename dialog box

EXPAND TREE/CONTRACT TREE
Use these menu items to grow or shrink the Object Manger trees; they duplicate the func-
tion of the ribbon buttons shown in Table 10.7, “Ribbon buttons for navigation aids,” on 
page 10-5.

Normally, the trees expand and contract by one level for every request. However, if a tree 
was fully expanded, and you have closed it entirely by double-clicking on the data file 
icon, the Object Manager remembers its previous position and the next expand request 
opens the tree to that level.

CREATE CHART
Dragging and dropping from the Object Manager is a quick and easy way to create new 
charts. To create new charts from the menu,
• Highlight an item (or several) in the Object Manager

• Select Create Chart from the Objects menu

If several items are selected, dragging and dropping them as a group will create a new 
User window with all of the objects arrayed as subplots. If you hold the Shift key down 
while dropping, each object will be displayed in its own window.

Windows Menu

In addition to some standard Windows entries, this menu allows you to customize Pirou-
ette through a series of preferences. The last items in this menu (those after Close All 
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16 Pirouette Reference: Windows Menu
Windows) are the titles of all open windows; the active window is denoted by a check. 
To make a different window active and bring it to the front (if it is behind another win-
dow), select it from the Windows menu.

Figure 16.46
Windows menu

PREFERENCES
Pirouette ships with many default settings. Although we have tried to choose generally 
appropriate values, you may wish to override them via the Preferences item in the Win-
dows menu. Preferences are grouped into four categories briefly described below.

Figure 16.47
Preferences

submenu

View
Most graphical and tabular display components can be customized, including colors and 
fonts. After selecting the View submenu item which opens the dialog box shown below, 
you can specify the view and attribute to customize. Clicking on a View and double-
clicking on an Attribute opens another dialog box where the changes are made. For more 
details on the changes possible for each view, see “View Preferences” on page 10-7.
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Figure 16.48
3D View Preferences

attributes

Chart - Label Attributes
Labels which are shown by default on new plots are governed by the settings in the Label 
Attributes dialog box. See “Label Attributes” on page 10-16 for details.

Figure 16.49
Plot Label Attributes

dialog

Chart - Window Attributes
Window behavior, including default size and position, are governed by the Window At-
tributes dialog. See “Window Attributes” on page 10-17 for explanations.
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Figure 16.50
Plot Window

Attributes dialog

Chart - Color Sequence
Pirouette graphics adhere to a color scheme based on one of two criteria. If a class has 
been activated (see “Activating a Class Variable” on page 13-19), then coloring of sam-
ple points and traces corresponds to values in the activated class. If no class is activated, 
then coloring is based solely on the row or column index of the data plotted. In either 
case, the color mapping is drawn from the Color Sequence which can be modified via the 
Color Sequence preference item shown below.

Figure 16.51
Color Sequence

dialog box

Add or delete colors by clicking on the appropriate button in the dialog. Double-click on 
a color to change an existing color without affecting the order. Revert to Pirouette’s de-
fault colors by clicking on Default.
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Prediction
The parameters in the dialog box shown in Figure 16.52 allow some fine tuning during 
predictions. Details on how you should use these parameters are given in the respective 
algorithm chapters.

Figure 16.52
Prediction

Preferences dialog
box

Info Text
You can access an object’s “historical” details via one of several info boxes. For exam-
ple, model info is shown in the Predict Configure dialog box when you select a model’s 
name. Attributes for this Info Text are set in a dialog box like that shown in Figure 16.53.
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Figure 16.53
Info Text dialog box

Because the information presented can be lengthy, specifying a small font insures that all 
text will fit in the space allotted.

Create/Delete/Load
It is sometimes advantageous to maintain several preference sets. The Create, Delete and 
Load items, which provide this management capability, are discussed in “Preference 
Sets” on page 10-21.

CASCADE/TILE
These items perform the function common to many Windows programs. Cascade arrang-
es all open windows in a descending stack, each offset from the previous. Tile resizes and 
arranges all open windows such that they fill the available area but do not overlap.

Plot windows will be tiled in order of most recent interaction first, and the tiling order is 
down then across.

CLOSE WINDOW/CLOSE ALL WINDOWS
Close Window closes the active chart window; this is equivalent to clicking on the win-
dow’s close box. The chart can be redisplayed later by dragging and dropping from the 
Objects Manager. All existing chart windows can be closed at once by choosing Close 
All Windows. The Object Manager window cannot be closed, although it can be mini-
mized.
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16 Pirouette Reference: Help Menu
Help Menu

The Help menu is your entry point to the on-line documentation supplied with Pirouette. 
The entire documentation set is included as portable document format (PDF) files which 
can be accessed from either the Help menu item or from the Information button in the 
ribbon.

Figure 16.54
Help menu

CONTENTS
The Contents item opens Acrobat Reader and loads the Pirouette User Guide. Using the 
built-in contents list (known as “bookmarks” in Reader), navigate from here to the spe-
cific chapter you want to examine.

INDEX
The Index item opens Acrobat Reader and loads the index to the Pirouette User Guide. 
Click on a page number associated with an index term to go that section of the main user 
guide document.

RELEASE NOTES
Pirouette is shipped with a separate file containing release notes. This contains informa-
tion that did not make it into the main documentation as well as helpful information about 
the various versions and changes to Pirouette prior to this release.

SETUP
Pirouette comes with Acrobat Reader, in the event you do not already have a copy. Ini-
tially, Pirouette expects Reader to be in its default install directory. If you installed Read-
er into another directory, use Setup to locate it so that when you access the above help 
items, Pirouette will be able to start the Reader and show the help item. To modify the 
path to Reader, specify the path via the dialog box shown below.
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Figure 16.55
Help Setup dialog

box

Note: Pirouette’s help was optimized for use with Acrobat Reader version 3.0 or later. If you 
use an earlier version of Reader, you may have difficulties printing to a non-postscript 
printer.

ABOUT PIROUETTE
The About Pirouette dialog box contains the current version number as well as informa-
tion on how to contact Infometrix. If needed, the build time is included in the title bar.

Figure 16.56
About Pirouette

dialog box
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he fundamentals of matrix mathematics will be presented in this appendix for those 
readers for which this material is new or unfamiliar. These techniques, however, 
will not be discussed in great detail; if you find it necessary to probe more deeply, 

you should consult one of several treatises on the subject, one of which appears as a ref-
erence at the end of this appendix1.

Notation used in this chapter, and in the Pirouette manual in general, will adhere to the 
following, typical set of rules. Scalars are represented by normal text; vectors are written 
as lower-case, bold characters; and matrices are shown as upper-case, bold characters. 
The transpose of a matrix, is denoted by an upper case, superscript T, while an inverse is 
shown by a superscript -1.

Vectors and Matrices

When several measurements are made on a sample, we can store those results as a vector, 
such as the row vector x, written as:

[17.1]

where the xj would be the responses from the sample for m different variables.

Similarly, the results from making a single measurement for a collection of several sam-
ples could also be stored in a vector, in this case the column vector y:

T

x x1 x2 … xm=
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[17.2]

where the yi are the responses for the n different samples for the measurement.

When many samples are characterized via the measurements of several variables, the re-
sponses can be represented in matrix form by building a composite of each of the sam-
ple’s response vectors:

[17.3]

In matrix notation, the dimensionality of the vector or matrix contains information about 
the number of samples and the number of measurements (e.g., the dimensionality of the 
matrix in equation 17.3 is n x m). If the dimensions are the same, n = m, then the matrix 
is square.

There are a number of special (square) matrices whose use will be noted later. For exam-
ple, a matrix all of whose values = 0, is termed a zero matrix:

[17.4]

A matrix is called symmetric when the elements reflected through the diagonal are equal, 
i.e., x12 = x21, x13 = x31. For example, the following matrix is symmetric:

[17.5]

A special case of a symmetric matrix is a diagonal matrix, in which all values for ele-
ments off of the diagonal are zero. Following is an example of a diagonal matrix:

[17.6]

The identity matrix I is a special case of a diagonal matrix where all of the diagonal ele-
ments are ones. Thus:

y

y1

y2

…
yn

=

X

x1

x2

…
xn

x11 x12 … x1m

x21 x22 … x2m

… … … …
xn1 xn2 … xnm

= =

Xzero

0 0 … 0
0 0 … 0

… … … …
0 0 … 0

=

A
4 1.3 22

1.3 9.5 0.68
22 0.68 0.14

=

B

4 0 0 0
0 9.5 0 0
0 0 0.14 0
0 0 0 15

=
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[17.7]

Finally, the transpose of a matrix is found by simply swapping the positions of the ele-
ments, e.g., x12 becomes x21, x13 becomes x31, and so on, as shown in the following equa-
tion:

[17.8]

Matrix Operations

In working with data expressed in vector and matrix notation, there are a number of linear 
algebra rules which govern the mathematics, many of which have analogies in scalar al-
gebra.

A vector x can be represented graphically as a line in m dimensions, whose endpoint is 
defined by a distance x1 along the first axis, a distance x2 along the second axis, and so 
on through the m axes. For example, the 2-dimensional vector x (x1,x2) is shown in the 
following figure:

Figure 17.1
Graphical illustration

of a 2-dimensional
vector

An important characteristic of a vector, besides its orientation, is its length. We are fa-
miliar with the Pythagorean theorem which states that the length of the hypotenuse of a 
right triangle is the square root of the sum of the squares of the two sides of the triangle.

[17.9]

This formula can be generalized for any number of dimensions, such that the length L of 
any vector x is computed as below. The notation ||x|| is often used for length.

[17.10]

Multiplying a vector by a constant is done by multiplying each element in the vector by 
the constant:

[17.11]

I

1 0 … 0
0 1 … 0
… … … …
0 0 … 1

=

XT

x11 x12 … x1m

x21 x22 … x2m

… … … …
xn1 xn2 … xnm

T
x11 x21 … xn1

x12 x22 … xn2

… … … …
x1m x2m … xnm

= =

Lhypotenuse x1
2 x2

2+( )1 2/=

Lx x1
2 x2

2 … xm
2+ + +( )1 2/=

cx cx1 cx2 … cxm=
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The length of the vector is increased accordingly:

[17.12]

Scalar multiplication of a matrix is similar to that for vectors:

[17.13]

The sum of two vectors is found by summing the corresponding elements from each vec-
tor:

[17.14]

Sums of matrices are found in a similar fashion:

[17.15]

Matrix addition (and subtraction) is both commutative:

[17.16]

and associative:

[17.17]

Note, however, that for addition to be permitted, the dimensions of the matrices must be 
identical, i.e., na = nb and ma = mb.

Two vectors are coincident (identical, other than length) if the angle between them is ze-
ro. We determine the angle from the following expression:

[17.18]

where xTy is the inner product of x and y:

Lcx c x1
2 x2

2 … xm
2+ + +( )1 2/ cLx= =

cX c

x11 x12 … x1m

x21 x22 … x2m

… … … …
xn1 xn2 … xnm

cx11 cx12 … cx1m

cx21 cx22 … cx2m

… … … …
cxn1 cxn2 … cxnm

= =

a b+

a1

a2

…
an

b1

b2

…
bn

+

a1 b1+

a2 b2+

…
an bn+

= =

A B+

a11 a12 … a1m

a21 a22 … a2m

… … … …
an1 an2 … anm

b11 b12 … b1m

b21 b22 … b2m

… … … …
bn1 bn2 … bnm

+=

A B+

a11 b11+ a12 b12+ … a1m b1m+

a21 b21+ a22 b22+ … a2m b2m+

… … … …
an1 bn1+ an2 bn2+ … anm bnm+

=

A B+ B A+=

A B+( ) C+ A B C+( )+=

θ( )cos xTy
LxLy
------------ xTy

xTx( )1 2/ yTy( )1 2/
--------------------------------------------= =
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[17.19]

Note that the length of x can also be expressed in the inner product notation, xTx:

[17.20]

From equation 17.18 we see that if the inner product of x and y is zero then the cosine of 
the angle between x and y is also zero, therefore, the angle between the vectors must be 
90°. Two vectors which form a right angle (90°) are perpendicular; in a data space of 
more than 2 dimensions, such vectors are said to be orthogonal.

A vector can be normalized to unit length (xTx = 1) by dividing by its length:

[17.21]

Two normalized vectors which are also orthogonal are said to be orthonormal.

Matrix multiplication also requires compatibility in the dimensions of the matrices: the 
number of columns in the first matrix must equal the number of rows in the second. The 
dimensionality of the product matrix C is determined by the number of rows in the first 
matrix A and the number of columns in the second B, respectively:

[17.22]

Multiplication is carried out such that the element in the ith row and jth column in C is 
formed from the inner product of the vectors from the ith row of A and the jth column of 
B

[17.23]

Unlike matrix addition, matrix multiplication is normally not commutative (BA would 
exist only if both A and B were square):

[17.24]

However, matrix multiplication is distributive and associative:

[17.25]

[17.26]

Multiplication of a matrix by the identity matrix of corresponding size leaves the matrix 
unchanged:

[17.27]

Matrix Inversion

The inverse of a scalar is defined such that the product of the scalar and its inverse is 1:

[17.28]

xTy x1y1 x2y2 … xmym+ + +=

Lx xTx( )1 2/=

xnorm
x

xTx( )1 2/
---------------------=

C nxm( ) A nxk( )B kxm( )=

cij aibj ai1b1j ai2b2j … aikbkj+ + += =

AB BA≠

A B+( )C AC BC+=

AB( )C A BC( )=

AI A=

kk 1– 1=
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17 An Introduction to Matrix Math: Eigenvectors and Eigenvalues
The inverse of a matrix is defined similarly; the product of a square matrix and its inverse 
is the identity matrix:

[17.29]

For example, if matrix A is the 2x2 matrix shown in the next equation:

[17.30]

then its inverse is determined by:

[17.31]

where Δ is the determinant of A,

[17.32]

Note that if the determinant is zero, then the inverse is not defined because a divide by 
zero would occur. Thus, for some matrices an inverse does not exist. Such matrices are 
termed singular matrices.

Diagonal matrices are invertible and are easily computed by taking the inverse of each 
element in the diagonal:

[17.33]

If all of the columns (or rows) in a matrix are mutually orthogonal, then the inverse of 
the matrix is equivalent to its transpose:

[17.34]

This concept provides an important tool for solving matrix equations.

Eigenvectors and Eigenvalues

For a square symmetric matrix A, an eigenvector (and its associated eigenvalue) is de-
fined as that vector x for which the following relationship is true:

[17.35]

or, in matrix form:

AA 1– I A 1– A= =

A
a11 a12

a21 a22
=

A 1– a11 a12

a21 a22

1–
a22 Δ⁄ a12– Δ⁄

a21– Δ⁄ a11 Δ⁄
= =

Δ A a11a22 a12a21–==

A 1– a11 0

0 a22

1–
1 a11⁄ 0

0 1 a22⁄
= =

N 1– NT=

a11x1 a12x2 … a1kxk+ + + λx1=

a21x1 a22x2 … a2kxk+ + + λx2=

…
ak1x1 ak2x2 … akkxk+ + + λxk=
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[17.36]

This can be rearranged to a form in which we can see how to solve for the roots of the 
equation:

[17.37]

For each of the k dimensions of the matrix A, there is an eigenvector and corresponding 
eigenvalue. Thus, A is decomposed by the suite of eigenvectors:

[17.38]

All of the k eigenvectors in the decomposition of A are unique unless there are redundan-
cies in the eigenvalues, i.e., there are eigenvalues whose values are equal. If any of the 
eigenvalues are zero, their corresponding eigenvectors do not contribute to the sum, 
therefore, the term can be omitted from the expression with no loss of information.

Decomposition of a data matrix, such as just described, provides us with an alternate co-
ordinate system with which to express our data. Instead of relating the individual data 
points to the original coordinates, the measured variables, we can transform the data 
points into a coordinate system in which the axes are the eigenvectors. Such a transfor-
mation normally results in an economy of expression: most of the dispersion in the data 
is compressed into the first few eigenvectors rather than being spread among all of the 
original measurements.

Reference

1. Malinowski, E.R. Factor Analysis in Chemistry - Second Edition, John Wiley & 
Sons, Inc.: New York (1991). 

Ax λx=

A λI–( )x 0=

A λ1x1x'1 λ2x2x'2 … λkxkx'k+ + +=
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e have tried to make Pirouette as reliable and intuitive as possible. Nevertheless, 
you may encounter situations in which an operation is unexpectedly terminated. 
This may occur due to a bug in the program or it may be the result of attempting 

to perform an operation using improper settings.

In the latter case, you will normally be presented with an error or warning message indi-
cating the likely cause of the problem. These messages are included in this chapter with 
additional explanations for their cause.

When one of these errors occur, the dialog box which will be shown should give you a 
clue to its cause, as discussed below. Other situations may arise where you are unsure 
what to do next. We have tried to anticipate some of these questions; see “Frequently 
Asked Questions” on page 18-2.

Tips

The following ideas may help your productivity as you use Pirouette.

Saving Data

Starting with Pirouette 4.0 rev 1, the ability to run as a standard User has been enabled. 
However, such a User with limited permissions cannot write to folders in Program Files, 
the default path for Pirouette. Instead, save your files in My Documents or a sub-folder 
thereof.

Transposing data

Many data sources store their samples as vertical tables of numbers. There are two ap-
proaches to getting this data into row-oriented form for Pirouette.

1) The ASCII format which Pirouette can read allows some flexibility in the formatting 
structure. You can take advantage of this flexibility to read the transpose of the file. The 

W
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18 Tips and Troubleshooting: Frequently Asked Questions
key is to place the #r (row) designator before the #c (column) designator. See “ASCII 
Files” on page 14-5 for more details. A step-by-step procedure for preparing to transpose 
data is given on our web site.

2) If you simply need to transpose one data file after loading and don’t need to be con-
cerned about file formatting, use the Transpose menu item in the File menu (see “Trans-
pose” on page13-12).

Merging files from different directories

You can use the Windows Explorer Find or Search utility to make a list of all files of ap-
propriate type. Be sure to restrict your search to the directory that contains only those 
subdirectories where your files reside. When the list of files is presented, highlight those 
files you wish to merge, then drag them onto the Pirouette interface. Switch to the Pirou-
ette interface to respond to a dialog which asks whether to merge the files as samples or 
as variables.

Note that the order of loading of files grouped in this way will be in the order of presen-
tation in the search folder (for example, by name or by date), with one caveat: the first 
file to load will be the one on which you click to initiate the drag into Pirouette.

Frequently Asked Questions

Most questions that you might have can probably be answered by a quick consultation of 
this document. The following discussions include answers to frequently asked questions 
(FAQs), which you should consult before seeking technical support. You should also 
check the “Known Problems” section of this chapter for a list of issues present in the cur-
rent version. Finally, many other issues and applications are covered on the Infometrix 
website (https://infometrix.com/support/user-questions/).

Why is my set name not enabled in the Predict configure dialog box?

The prediction algorithms in Pirouette are aware of excluded variables. Thus, if column 
exclusions were present in the training set, the algorithms will know to ignore those vari-
ables during prediction. This means that you cannot have column exclusions in the data 
for which you want to make a prediction. On the other hand, if there are no column ex-
clusions, but only row exclusions, these subsets will appear enabled in the list.

I merged some data but the new rows (columns) are greyed out. How do I get them to 
be included?

Highlight the excluded rows and/or columns and do Edit > Include. Alternatively, drag 
the Disk icon from the Object Manager to the desktop. This creates a new subset that has 
all rows and columns included.

When saving a model, I type the model name and hit OK but nothing happens.

To save a model, you need to tell Pirouette which model(s) you intend to save. Since a 
Pirouette session can include an assortment of models, you must select a model by click-
ing on its name before the model save will occur. 

I can’t see all of the text in the information box.

Depending on your screen resolution and the font which is set for the Info Box Text pref-
erence, certain information boxes (e.g., Model Info, Object Manager right mouse click 
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info) may not be large enough to show all of the data. With version 4.0, the Model Info 
text is placed within a scrollable window. Click on a text string, hold the mouse down, 
and drag downwards or to the right.

Workaround. Reduce the font size for the Info Box Text preference; Courier 9 points is 
usually small enough (see “Info Text” on page 16-43).

My screen is full of my results. How can I drag a result to make a new plot?

Because Pirouette allows you to view results from many analyses, it is not uncommon to 
fill the screen with chart windows. However, another valid target for a drag and drop op-
eration is the ribbon itself. Note that the drop icon is the active cursor so long as you are 
over any blank Pirouette real estate, any window other than the Object Manager, or the 
entire ribbon area (see “Creating Charts from the Object Manager” on page 12-1).

My analysis aborted. What went wrong?

There are many reasons why an analysis might abort. To discover the most likely cause, 
click on the Details button (or double-click on the Abort message line) before you close 
the Run Status dialog box. The reason for the abort will be given in another message box. 
Examples of messages you may encounter are detailed later in this chapter.

When I try to save my data to a .PIR file, I get message “filename ... was not saved”.

If you drag a large number of files (more than ~45) from Windows Explorer into Pirou-
ette, then try to save the file in Pirouette (*.PIR) format, this message will be presented. 
This is an artifact of the compiler used to control the Pirouette file server.

Workaround. Save the merged data into the ASCII (*.DAT) format instead. You can 
then load the ASCII file and save it to Pirouette format. You may have to quit Pirouette, 
restart and reload the ASCII file (tip: load it from the Recent Files list).

I selected Pirouette from the Start menu (or, I double-clicked on the Pirouette icon) 
but nothing happens. Pirouette does not run.

If you are running Windows and your account does not have at least Power User privi-
leges, you will not be able to run Pirouette. 

Additionally, your administrator will need to allow Write Permissions on your computer 
within the Pirouette folder [typically C:\Program Files\Infometrix\Pirouette #.##].

Messages

The messages which are displayed by Pirouette can be grouped into three types: Errors, 
Warnings and other forms of Alerts.

ERROR MESSAGES
Error messages are given when you and/or the program has done something wrong or un-
expected. They are most likely to occur with certain operations, so the discussion which 
follows is grouped accordingly.
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File Errors

Figure 18.1
File does not open

If Pirouette is not able to read the file you are trying to open, an alert will be displayed. 
Check to make sure that the proper file filter is specified. If you are trying to read an AS-
CII or a spreadsheet format file, open the file in the originating program or in a word pro-
cessor to verify the format. Refer to “Opening and Merging Existing Data Files” in 
Chapter 14 for information on acceptable formats. If the file still will not read, check the 
Infometrix home page (http://www.infometrix.com) to see if there are updated file serv-
ers for the type you are trying, or contact the support line by phone or e-mail (sup-
port@infometrix.com).

Figure 18.2
File could not be

opened

If a Pirouette file is already in use by another instance of Pirouette, you will not be al-
lowed to open the file.

Figure 18.3
File could not be

saved

Similarly, if you try to save a file that is in use by another application, the save will be 
blocked.

Figure 18.4
File names cannot

contain illegal
characters
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Just as Windows Explorer will not allow certain characters to be included in a file name, 
so Pirouette will prevent you from attempting to create a file with illegal characters. If 
you encounter this error, remove the offending character and continue with the file save.

Plotting Errors

Figure 18.5
Line Plot is not

shown

When viewing your data graphically, the Selector tool is used to add or remove data 
points from the view. A Pirouette graph must have at least one data point in a scatter pre-
sentation or one line in a line plot. If you try to remove all of the data from a plot, then 
hit the OK button, this message will be displayed.

Figure 18.6
Multiplot is not

updated

If you use the Selector dialog box to modify the number of subplots to appear in a mul-
tiplot, you cannot select fewer than three items, otherwise an error message will be 
shown.

Figure 18.7
Scatter plot does not

update

If you use the Selector dialog box to modify the axes to be shown in a scatter plot, you 
must specify the axis name correctly. Otherwise, an error message will be shown to let 
you know that your choice for the axis label is inappropriate.

Processing Errors
Unlike the Process > Configure dialog box, you must specify a subset and a model to per-
form a prediction. If you forget to select both, then hit the Run button, you will be warned 
that this combination was not properly selected. This would also occur if you pressed the 
Run button when no models were available or all subsets were disabled.
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Figure 18.8
Subset - processing

pair not properly
selected

If an algorithm aborts during the run, the status box will not go away of its own accord 
and the run sequence will remain on screen for you to see which algorithms ran and 
which did not. To obtain the detail on why an algorithm aborts, double-click on the ap-
propriate line or select the line and click on the Details button (see example figure be-
low).

Figure 18.9
Processing Status
dialog showing an

aborted run

This action will bring up a message box, similar to the one in the following figure, de-
scribing the source of the problem.

Figure 18.10
Abort dialog box

Possible causes for an algorithm to abort are listed below.

Variable <name> is Invariant

One of the variables (variable number specified) is a constant. If variance or autoscaling 
are selected, but the values in a column are constant, a divide-by-zero could occur.

PCA Maximum Factors Option Error

The number of factors to be computed in PCA was set higher than is possible for the data 
set. Change the value to fall within the range given by the configuration parameters.
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PCA has already been run

If an algorithm is configured to run with exactly the same parameters as in a analysis that 
has already been run, Pirouette will not recompute the results, rather it will redisplay the 
results for the equivalent analysis.

PCA Max # Rotated Components Option Error

You may not select to rotate more components in a Varimax operation than the number 
of factors set to compute in PCA.

Run Halted by User Abort

When a set of analyses are in progress, and the Status Box is still showing, you may click 
on the Abort button to prevent the completion of any analyses that are labeled as Waiting. 
The current analysis will complete.

Data Matrix is Ill-Conditioned

If the true rank of your data matrix is less than the number of factors you requested to be 
extracted, this error can be generated. This situation can arise in a designed data set or in 
one in which there is very little variability among the samples or in a case when many 
variables are highly correlated or, in the extreme, they are identical except for a scale fac-
tor. Reduce the number of factors to be extracted and process again.

Transform Errors
If the settings for one or more of the transforms are not properly within the allowed range, 
an error will be generated and the analysis will abort. The error for the situation will be 
presented in a dialog box like that shown below. Possible transform errors are listed be-
low

Figure 18.11
Example Transform

Error dialog

Derivative window must be between 5 and 20

You cannot set the number of points in a derivative to be larger than the number of vari-
ables in the full data set.

Smooth window must be between 5 and 20

You cannot set the number of points in a smooth to be larger than the number of variables 
in the full data set.

Cannot multiply by zero

You cannot set the multiplication factor to be zero, although the value can be negative or 
positive.

Must normalize by a positive real number

The normalization factor must be greater than zero.
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Can only subtract on excluded variable

To use the Subtract transform, by variable, the variable which is selected must be exclud-
ed first. After subtraction, the variable selected will in effect become zero for all samples, 
permitting a divide-by-zero error. If excluded first, there will be no effect.

X missing value(s) in included rows

Some transforms operate exclusively on the included columns ignoring values in exclud-
ed variables. However, others, in particular the derivatives, use the entire variable range, 
even if some columns are excluded. Therefore, these transforms require that there be no 
missing values in the included rows.

WARNING MESSAGES
Warning messages are given to let you know that the operation you are about to make 
may create some undesirable effect. They will usually give you a chance to cancel the 
action to avoid the effect. As with the Error messages, these messages will occur mostly 
in certain scenarios, and are, therefore, listed in groups according to behavior.

Demonstration Version Warnings

Figure 18.12
File does not open

If you try to process an unauthorized file in a demonstration version of Pirouette, this 
message will come to the screen. Pressing OK returns you to the Pirouette environment 
without opening the file.

Figure 18.13
Demo version runs

If you try to run Pirouette without having first registered the software, this message will 
come to the screen. If you press the Yes button, the program will run, but in demonstra-
tion mode. Choosing No will exit Pirouette.
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Delete and Edit Warnings

Figure 18.14
Paste does not

complete

When pasting data into a Pirouette spreadsheet, the dimensionality of the target cell area, 
in terms of number rows and columns of data cells, must match that of the copied data. 
Two exceptions to this rule exist:
1. If only a single cell is selected

2. If the selected target cells represent an exact multiple of the copied cells

Figure 18.15
Converting a column

to Class variable
type

Because class variables are of nominal (integer) values only, when you convert a variable 
of another type to Class, the values will be truncated.

Figure 18.16
Editing data

If you edit data—by typing, inserting or deleting—after results have been computed, the 
results affected will be lost.

Figure 18.17
Deleting a data

subset

If you choose to delete a subset, from the Object Manager, not only will the subset be 
removed, but any associated results as well.
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Figure 18.18
Deleting a result

If you choose to delete a result, from the Object Manager, a warning will be given before 
proceeding so you can be sure of your action.

Figure 18.19
Cannot delete fixed

object

Certain objects in the Object Manager cannot be deleted, including individual computed 
results, the Disk icon which represents the data file, and the Chart icon itself. However, 
see below.

Figure 18.20
Deleting charts

If you hit Delete when the Chart icon itself is selected, you will close all chart windows. 
This is a shortcut you should use carefully.

Figure 18.21
Delete a single

subplot

If, from the Object Manager Charts view, you hit Delete when a single subplot icon in a 
plot array is selected, only that plot will be removed.
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Figure 18.22
Delete a single plot

or plot array

If you hit Delete when a single plot or plot array icon in the Object Manager is selected, 
only that plot or group of plots will be removed. In this way, you can remove an entire 
chart window or just selected subplots in a chart.

Figure 18.23
Delete several plots

or arrays

If you hit Delete when several plot or plot array icons (or a combination of the two) in 
the Object Manager are selected, that group of plots will be removed.

File Warnings

Figure 18.24
Saving a file

If you choose to read in a new data file or quit Pirouette, the program checks to see if you 
have saved your work. If you have performed any edits or computations since your last 
save, Pirouette will warn you of the potential loss and give you the option of saving the 
data or aborting the abandonment of calculated results.

Figure 18.25
Merging a file

Pirouette’s Merge facility allows you to merge one or more files, as either new samples 
or variables. If one or more of the files to be merged cannot be read by Pirouette, a warn-
ing will be issued.
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Figure 18.26
Saving a file with

more than 256
columns

If you request to save a file with more than 256 variables to an old Excel spreadsheet for-
mat (.XLS), you can still load that file back into Pirouette, but the extra columns may be-
come lost if you open the file in an older spreadsheet application.

OTHER ALERTS
Besides the Error and Warning messages, other alerts may be given; some of these are 
generated by the Windows operating system.

Figure 18.27
Printing does not

happen

If your printer is not attached or off-line when you ask Pirouette to print, you will see a 
system message as in the figure. Verify that your printer is on and attached to your com-
puter, then try the print task again.

Known Problems

The following are known issues or problems in this version of Pirouette. Contact Info-
metrix for the status of the fixes for these problems.
• When loading a data file with blank sample and/or variable names (e.g., from an Ex-

cel file), Pirouette will apply default names. However, a scatter plot may not initially 
show names for all points. Scroll through the entire table so that the names get cre-
ated, then show the scatter plot.

• If you change to a preference set which contains different color assignments in the 
Color Sequence, some plots may not properly update their colors. Either open the 
Color Sequence dialog box and click OK or close the plot and reopen a new copy.

• Some users have reported issues following multiple insertions and/or deletions. As a 
workaround, save the file in the ASCII (*.dat) format, load this new file, then repro-
cess.

• Repeatedly magnifying line plots can occasionally cause spurious horizontal or verti-
cal lines to appear which vanish when the plot is unmagnified. This problem derives 
from your system’s graphics card.
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• When using SIMCA with Scope set to Global, some objects may be computed im-
properly. We recommend that you use only Local Scope, the option which is most 
reasonable in the majority of situations.

• Merging files with more than 65000 variables may fail unexpectedly if more than a few 
samples are selected. If possible, merge one sample at a time and save intermediate 
files.
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Technical Assistance

Infometrix offers readily available technical assistance. We can provide you with assis-
tance if you are having difficulty in installing or running the software. If you require as-
sistance on the use of the technology to solve particular problems, Infometrix can also 
provide consulting and/or training in general or customized to your application. Contact 
us for more details.

Telephone: (425) 402-1450

Email: support@infometrix.com

Current applications information, as well as a conduit to a variety of other sites for che-
mometric information, is available in the Infometrix web page:

https://www.infometrix.com/
18–14
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Introduction

The Pirouette user interface is easy to interact with, containing many shortcuts for users 
who like to use them. There are times when you may want to perform some well-defined 
routine processing to your data, with no interaction, in an effort to be efficient. Pirouette 
5 has been enhanced to allow scripting of common functions. 

Scripting for Pirouette does not use any language as a basis, rather, it consists of a set of 
predefined command codes. Script files are composed as a set of these codes. There are 
rules for the presentation of the script codes and there is an implicit order of operation in 
the sequence of commands. 

The script files can be introduced to Pirouette in one of two ways:
• As a command line parameter

• As a key in the Infometrix.ini file

When invoked from the command line, the script file must use .pscript as the file exten-
sion. Here is an example of calling a script from the Run dialog:

C:\PROGRAM FILES (X86)\INFOMETRIX\PIROUETTE 5.0\PIROU-
ETTE.EXE" "C:\PROGRAMDATA\INFOMETRIX\SCRIPTS\MY-
SCRIPT.PSCRIPT
Next is an example of invoking a script using the ini file, found here: C:\Windows\info-
metrix.ini. The script file name is set as a value for the Run Script key under the [Pirou-
ette] block in the ini file.

[Infometrix Locations]

Common Files=C:\Program Files (x86)\Common Files\Infometrix\

License2=C:\Program Files (x86)\Common Files\Infometrix\Licensing
19–1



19 Pirouette Scripting: Rules and Instructions
LogFile=C:\Program Files (x86)\Common Files\Infometrix\Logging

Pirouette 5.0=C:\Program Files (x86)\Infometrix\Pirouette 5.0\

[Pirouette]

Run Script = "C:\ProgramData\Infometrix\Scripts\myscript.pscript"

There is no error checking when running Pirouette with a script. If it fails, you will not 
be notified with a reason for the failure. In some instances, if the presentation of the script 
results in an actual bug, there may be a reason given in the log. Otherwise, caveat emptor. 

Rules and Instructions

Each line of a script file must contain a single character known as the Command, a man-
datory single space, and a Parameter (the interpretation of which varies with the Com-
mand). ALL characters on a line after the first space are defined as the Parameter Line.

Every line of the script is meaningful. Blank lines are not supported.

There is no white space in any Parameter Line. Everything counts. Sometimes multiple 
values ('Parameters') are combined within a Parameter Line. When this is done, a single 
space (and only a space) separates each successive individual parameter. There should 
not be any spaces at the end of the Parameter Line.

Commands ARE case sensitive. a and A have different meanings.

Parameters are required, even if they have no meaning. There MUST be at least one vis-
ible character in the Parameter Line of each and every line of the script.

Do not use quotation marks of either type for any reason.

Text Bitmaps (whether in the script or in a separate file) are a string of nothing but 0s and 
1s. No white spaces, no line breaks. The number of characters (0/1) must match exactly 
with a data file's number of Columns or Rows.

The commands in a script file are executed in order, before the Pirouette user interface 
becomes active. Once the user interface is active, there are no further script commands 
and no provision to invoke script commands.

Order of Commands matters. You need to load a file, for example, before running an al-
gorithm.

There can be ONLY ONE algorithm run declared within a script. It uses the last exclu-
sion set created, the cumulative algorithm parameters set, and the cumulative transform 
options declared (in the order declared). The only way to reset the transforms is to quit. 
The algorithm options may be set any number of times, but only the last setting is used. 
If you need to run another algorithm on a file, prepare a separate script that you would 
invoke after quitting Pirouette (either via the script or manually).

Success or failure of script commands is (hopefully) indicated in the Infometrix Log. 
There is no user interface while scripting. Scripting cannot be prepared from the Pirou-
ette interface, only from a text writing program.
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Scripting Commands - Alphabetical Order

Cmd Parameter Description and Options
1 integer 1st Derivative Transform. Parameter indicates # of points.
2 integer 2nd Derivative Transform. Parameter indicates # of points.

a integer integer Align Transform. 1st Parameter is Window size. 2nd Paramater is Align to row #. 
There must be (exactly) 1 space between parameters.

A char Declare regression Algorithm to use. Parameter indicates type:
S Partial Least Squares Regression
C Principal Components Regression

b char integer Baseline Correct Transform. 1st parameter indicates type, with:
 S Subtract Sample. 2nd parameter indicates Row #.

L Linear Fit. 2nd parameter indicates Row # as mask IF non-0.
Q Quadratic Fit. 2nd parameter indicates Row # as mask IF non-0.
C Cubic Fit. 2nd parameter indicates Row # as mask IF non-0.
For the later three cases, a 0 integer indicates no Row number. There must be 
(exactly) one space between parameters. Both are required.

B integer 
Set BestI (do before alg Run 'G' command). Parameter indicates BestI.1 Note 
that not all algorithms or all situations take a scalar BestI. Some may require a 
vector of values. Only integer values are presently supported.

c integer MSC Transform. Parameter indicates Row Index [1..n]. Use '0' for none.

C text bitmap Declare Column Selection via in-script string of 0 and 1. (1 indicates an 
exclusion.)

d char integer Divide By Transform. 1st parameter indicates type, with:
1 Sample 1-Norm. 2nd parameter indicates Row # as Mask IF non-0.
2 Sample 2-Norm. 2nd parameter indicates Row # as Mask IF non-0.
M Sample Max. 2nd parameter indicates Row # as Mask IF non-0.
R Sample Range. 2nd parameter indicates Row # as Mask IF non-0.
V Value at Variable. 2nd parameter indicates variable #.
S Sample Vector. 2nd parameter indicates Row # to use.
For the first four cases, a 0 integer indicates no Row # as mask. There must be 
(exactly) one space between parameters. Both are required.

D char Distance Metric. Parameter is one of:
E Euclidean
N Euclidean (no init)

E exclusion set Create an exclusion set using last declared column & row. Set is named in the 
Parameter.

F file path+ Save a Pir2 file. File is named in the Parameter. Existing files of the same name 
will not be overwritten.

G alg name
Run an algorithm. Algorithm is named in the Parameter and is an EXACT string 
match with Pirouette internals. Presently supported: 
ALS, CLS, HCA, KNN, LWR, MCR, PCA, PCR, PLS, PLS-DA, SIMCA

I integer Index (1-offset) of class variable to use. (1st class variable is '1', 2nd '2', etc) 
l Log10 Transform. Note that a parameter is required (but meaningless).
K char Linkage Method. Parameter is one of:

S Single
D centroiD
C Complete
I Incremental
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19 Pirouette Scripting: Scripting Commands - Alphabetical Order
M Median
A group Average
F Flexible

L file path+ Load a data file.
M file path+ Save a model file.
n float Normalize Transform. Parameter is normalize value.
N integer Number of Neighbors.
O char Set Closure. Parameter is one of:

N none
A Amounts
P Profiles

P float Probability Threshold. Parameter should be < 1.00.
Q integer Set the 'Compute Q-threshold' flag. Integer is interpreted as a boolean value:

0 for FALSE
non-0 for TRUE

R text bitmap Declare Row Selection via in-script string of 0 and 1. (1 indicates an exclusion.)
s integer Smooth Transform. Parameter is number of points.

S file path+ Declare Row Selection via file. Files are text 'bitmaps' of 0 and 1. (1 indicates 
exclusion.)

T char Dendrogram Orientation. Parameter is one of:
S Sample
V Variable

U 2chars <2chars> Unimodality. Parameters may appear in any order. They require 1 space (exactly) 
between them if both are included. 1st & 2nd parameter one of:
A0 Amounts 'false'
A1 Amounts 'true'
P0 Profiles 'false'
P1 Profiles 'true'

v SNV Transform. Parameter is required, though ignored.

V file path+ Declare Column Selection via file. Files are text 'bitmaps' of 0 and 1. (1 indicates 
an exclusion.)

W char Scope. Parameter is one of:
G Global
L Local

X Exit Pirouette. Parameter is required, though ignored.
~ char Set the Initial Estimate from (parameter):

R rows
C columns

! char Declare Algorithm Preprocessing. Characters recognized are:
A(utoscale)
M(ean center)
P(areto)
R(ange scale)
V(ariance scale)

# integer Declare MaxFactors for Algorithm.
& char<integer> Declare ValidationMethod for Algorithm. Characters recognized are:

C(lass Variable) [Number indicates a class column index]
S(tep validation) [Number indicates Leave Out number]

Cmd Parameter Description and Options
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Key

<> indicates an optional value.

1 algorithm does not presently support setting 'Best I'.

X (cross validation) [Number indicates Leave Out number]
Use '0' for none or N/A.

* char<integer> Declare RotationMethod for Algorithm. Characters recognized are:
R(aw) [Number indicates Max Rotated Factors]
N(ormal) [Number indicates Max Rotated Factors]
W(eighted) [DO NOT include a number or any other input]
W(eightedNumbers) [Number indicates Max Rotated Factors]
Use '0' for No Rotation

- char float/int Subtract Transform. 1st parameter indicates type with:
# (value) [float 2nd parameter indicates value to subtract]
V(ariable) [int 2nd parameter indicates variable number to subtract]
There must be (exactly) one space between parameters. Both are required.

+ 2chars <2chars> Non-Negativity. Parameters may appear in any order. They require 1 
space(exactly) between them if both are included. 1st & 2nd parameter one of:
A0 Amounts 'false'
A1 Amounts 'true'
P0 Profiles 'false'
P1 Profiles 'true'

Cmd Parameter Description and Options
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Scripting Commands - Functional Order

Cmd Parameter Description and Options

G alg name Run an algorithm. Algorithm is named in the Parameter and is an EXACT string 
match with Pirouette internals. Presently supported:
ALS, CLS, HCA, KNN, LWR, MCR, PCA, PCR, PLS, PLS-DA, SIMCA

X Exit Pirouette. Parameter is required, though ignored.

F file path+ Save a Pir2 file. File is named in the Parameter. Existing files of the same name 
will not be overwritten.

L file path+ Load a data file.
M file path+ Save a model file.

C text bitmap Declare Column Selection via in-script string of 0 and 1. (1 indicates an 
exclusion.)

V file path+ Declare Column Selection via file. Files are text 'bitmaps' of 0 and 1. (1 indicates 
an exclusion.)

R text bitmap Declare Row Selection via in-script string of 0 and 1. (1 indicates an exclusion.)

S file path+ Declare Row Selection via file. Files are text 'bitmaps' of 0 and 1. (1 indicates an 
exclusion.)

E exclusion set Create an exclusion set using last declared column & row. Set is named in the 
Parameter.

! char Declare Algorithm Preprocessing. Characters recognized are:
A(utoscale)
M(ean center)
P(areto)
R(ange scale)
V(ariance scale)

* char<integer> Declare RotationMethod for Algorithm. Characters recognized are:
R(aw) [Number indicates Max Rotated Factors]
N(ormal) [Number indicates Max Rotated Factors]
W(eighted) [DO NOT include a number or any other input]
W(eightedNumbers) [Number indicates Max Rotated Factors]
Use '0' for No Rotation

Q integer Set the 'Compute Q-threshold' flag. Integer is interpreted as a boolean value:
0 for FALSE
non-0 for TRUE

A char Declare regression Algorithm to use. Parameter indicates type:
S Partial Least Squares Regression
C Principal Components Regression

B integer
Set BestI (do before alg Run 'G' command). Parameter indicates BestI.1 Note that 
not all algorithms or all situations take a scalar BestI. Some may require a vector 
of values. Only integer values are presently supported.

# integer Declare MaxFactors for Algorithm.
& char<integer> Declare ValidationMethod for Algorithm. Characters recognized are:

C(lass Variable) [Number indicates a class column index]
S(tep validation) [Number indicates Leave Out number]
X (cross validation) [Number indicates Leave Out number]
Use '0' for none or N/A.

I integer Index (1-offset) of class variable to use. (1st class variable is '1', 2nd '2', etc)
N integer Number of Neighbors.
P float Probability Threshold. Parameter should be < 1.00.
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W char Scope. Parameter is one of:
G Global
L Local

O char Set Closure. Parameter is one of:
N none
A Amounts
P Profiles

U 2chars <2chars> Unimodality. Parameters may appear in any order. They require 1 space (exactly) 
between them if both are included. 1st & 2nd parameter one of:
A0 Amounts 'false'
A1 Amounts 'true'
P0 Profiles 'false'
P1 Profiles 'true'

~ char Set the Initial Estimate from (parameter):
R rows
C columns

+ 2chars <2chars> Non-Negativity. Parameters may appear in any order. They require 1 
space(exactly) between them if both are included. 1st & 2nd parameter one of:
A0 Amounts 'false'
A1 Amounts 'true'
P0 Profiles 'false'
P1 Profiles 'true'

D char Distance Metric. Parameter is one of:
E Euclidean
N Euclidean (no init)

K char Linkage Method. Parameter is one of:
S Single
D centroiD
C Complete
I Incremental
M Median
A group Average
F Flexible

T char Dendrogram Orientation. Parameter is one of:
S Sample
V Variable

1 integer 1st Derivative Transform. Parameter indicates # of points.
2 integer 2nd Derivative Transform. Parameter indicates # of points.
s integer Smooth Transform. Parameter is number of points.
b char integer Baseline Correct Transform. 1st parameter indicates type, with:

 S Subtract Sample. 2nd parameter indicates Row #.
L Linear Fit. 2nd parameter indicates Row # as mask IF non-0.
Q Quadratic Fit. 2nd parameter indicates Row # as mask IF non-0.
C Cubic Fit. 2nd parameter indicates Row # as mask IF non-0.
For the later three cases, a 0 integer indicates no Row number. There must be 
(exactly) one space between parameters. Both are required.

d char integer Divide By Transform. 1st parameter indicates type, with:
1 Sample 1-Norm. 2nd parameter indicates Row # as Mask IF non-0.

Cmd Parameter Description and Options
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Key

<> indicates an optional value.

1 algorithm does not presently support setting 'Best I'.

Example Scripts

LoadRunPCA.pscript

Load a file, set up parameters, run PCA.

LoadRunPLSSaveQuit.pscript

Load a file, set up parameters, run PLS, save a Pirouette file, exit.

2 Sample 2-Norm. 2nd parameter indicates Row # as Mask IF non-0.
M Sample Max. 2nd parameter indicates Row # as Mask IF non-0.
R Sample Range. 2nd parameter indicates Row # as Mask IF non-0.
V Value at Variable. 2nd parameter indicates variable #.
S Sample Vector. 2nd parameter indicates Row # to use.
For the first four cases, a 0 integer indicates no Row # as mask. There must be 
(exactly) one space between parameters. Both are required.

n float Normalize Transform. Parameter is normalize value.
c integer MSC Transform. Parameter indicates Row Index [1..n]. Use '0' for none.
v SNV Transform. Parameter is required, though ignored.
- char float/int Subtract Transform. 1st parameter indicates type with:

# (value) [float 2nd parameter indicates value to subtract]
V(ariable) [int 2nd parameter indicates variable number to subtract]
There must be (exactly) one space between parameters. Both are required.

l Log10 Transform. Note that a parameter is required (but meaningless).

a integer integer Align Transform. 1st Parameter is Window size. 2nd Paramater is Align to row #. 
There must be (exactly) 1 space between parameters.

Cmd Parameter Description and Options

Script commands Explanation
L C:\Program Files (x86)\Infometrix\Pirouette 5.0\Data\XCIP4.DAT Load the file XCIP4.DAT

! M Set preprocessing to 
mean-center

# 10 Set maximum factors to 10

B 0 Don't set optimal factors; 
let Pirouette do so

G PCA Run PCA

Script commands Explanation

L C:\Program Files (x86)\Infometrix\Pirouette 5.0\Data\HYDROCRB.DAT Load the file 
HYDROCRB.DAT

! M Set preprocessing to 
mean-center

# 10 Set maximum factors to 10
B 0 Don't set optimal factors
G PLS Run PLS
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LoadExcludeSNVPLS.pscript

Load a file, set up an exclusion bitmap for samples, give a name to the exclusion set, set 
transform to use SNV, set up parameters, run PLS.

LoadExcludeRCxValSNVPLS.pscript

Load a file, set up exclusion bitmaps for rows and for columns, name the exclusion set 
set up parameters including leave 4 out cross validation, run PLS. 

F C:\Program Files (x86)\Infometrix\Pirouette 5.0\Data\HYDROCRBsave.PIR2 Save file to a Pirouette 2 
format

X 0 Quit Pirouette

Script commands Explanation

Script commands Explanation

L C:\Program Files (x86)\Infometrix\Pirouette 5.0\Data\HYDROCRB.DAT Load the file 
HYDROCRB.DAT

R 000010000000000000000000000000 Define a row bitmap; 1 
means exclude this row

E Exclude5 Set exclusion set name to 
"Exclude5"

v 0 Set transform to SNV

! M Set preprocessing to 
mean-center

# 10 Set maximum factors to 10
B 0 Don't set optimal factors
G PLS Run PLS

Script commands Explanation

L C:\Program Files (x86)\Infometrix\Pirouette 5.0\Data\HYDROCRB.DAT Load the file 
HYDROCRB.DAT

R 000010000000000000000000000000 Define a row bitmap; 1 
means exclude this row

V C:\ProgramData\Infometrix\Scripts\HydrocrbExcludeVars.txt Define a column bitmap 
from a file; 

excludes some x and y variables

E ExcludeRowAndColumns Set exclusion set name to 
"ExcludeRowAndColumns"

v 0 Set transform to SNV

! M Set preprocessing to 
mean-center

& X4 Set cross validation, with 4 
left out

# 20 Set maximum factors to 20
B 5 Set optimal factors to 5
G PLS Run PLS
19–9
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Index A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Index

Numerics
2D scatter plot

Axes 12-5
Interaction 12-5

3D scatter plot
Axes 12-5
Preferences 10-12
Spinning

Arrow keys 12-10
Cylindrical vs. spherical 12-11
Depth cueing 12-11
Momentum spinning 12-10
Spin control buttons 12-10
Spinner Tool 12-9

A
Abort

Details 16-31
Message 18-6

Abstract factor 5-14
Acrobat Reader

using for on-line Help 16-45
Activate class 12-27, 13-19, 16-15
Activate Class button 12-35
Active class 6-2, 6-27, 7-44
AIA file format 4-23, 14-10, 15-5
Alert messages 18-12
Align

Discussion 4-22
for Chromatography 4-22
Options 4-23

Alt key 16-1
Alternating Least Squares (ALS) 8-3
Appending data 16-5
ARCH 5-10, 9-2
Arrow

Cursor 10-6
in Scroll Bar 13-4

ASCII
File input 14-5
File output 15-3
Models 15-9

Asterisk (*)
Class variable flag 14-8
Filling missing values 13-13
Missing value flag 16-6

Autoscale 4-29

Axis
Default label 10-17
Selection 10-5, 12-5

B
Baseline Correction 4-18
Bidiagonalization 7-5
Bitmap 15-2, 16-13
Block scaling 4-17
Bounding ellipse 6-24
Buttons

Ribbon 10-3

C
Calibration transfer 4-33, 6-29, 7-56
Category validation 5-21
Centroid link 5-3, 5-8
Centroidal clustering 5-6
Charts

Creating 12-1, 12-3
Custom 11-8
Getting information 12-2
Graph types 12-4
Label preferences 10-16
Removing 11-7
Window preferences 10-16
Window titles 12-3

Chemometrics
Information 1-6

Chromatographic alignment 4-22
Class

Active class cue 3-15
Color mapping to 12-34
Distances 6-22
Fit 6-9
Probabilities (SIMCA) 6-27
Projections 6-24
Variable 13-5

Classical Least Squares (CLS)
Math 7-44
Options 7-48
Prediction 7-53

Clear 13-9
Click-drag 10-1, 13-4
Cloaking 12-8
Closure 4-16
Clustering
I–1 Z



Index A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Centroidal 5-6
Farthest neighbor 5-5
Nearest neighbor 5-5

Color
and Dendrogram 12-23
Mapping from class 12-34
of Lines 12-15
of Text 10-8
Preferences 10-7
Sequence 10-18

Column
Index 13-19
Types 13-5

Communality 5-28
Complete link 5-3, 5-7
Confidence ellipse 5-35
Confidence limits 6-24, 7-12, 7-35
Confusion matrix 7-39
Contributions 5-26, 5-40, 5-46
Control-click 10-2
Copy

Data values 13-9
Graphics 15-2
Results 16-13

Correlation spectrum 7-26
Cross validation 5-20, 7-46
Crossover 5-9
Ctrl-click 16-5
Current cell 13-15
Cursor descriptions 10-6
Curve resolution 8-1, 8-12
Cut, Copy, Paste 16-13

D
DAT file 1-2, 14-5
Data point

Size 10-11
Data scaling 12-11
Data sets

ALCOHOL 9-2
ARCH 5-10, 9-2
DAIRY 9-2
DIESEL 9-3
FUEL 9-3
HYDROCRB 9-3
MNAPS 9-4
MYCALIGN 9-4
MYCOSING 9-4
OCT_TEST 3-29
OCTANE20 3-4, 5-11, 9-4
PALMCHRO 14-3
RANDOM 5-4, 9-5
SEVEN 9-5
TERNARY 9-5
XRF 9-5

Decision diagram 6-10, 6-23
Defaults

Preferences 10-20
Subset name 11-6

Delete
Charts 11-7
Data values 13-9
Objects 11-7

Samples, variables 16-14
Demonstration version 18-8
Dendrogram

Activating a class 12-27
Arrow keys in 12-25
Description 5-1, 12-22
Navigation 12-25
Similarity 12-23, 12-25

Dependent variable 4-5, 7-1, 7-3, 13-5
Derivative 4-12
Determinant (of a matrix) 17-6
Diagonal matrix 17-2
Diamond marker 7-16
DIESEL 9-3
Dimensionality 5-14, 14-6
Direct Standardization 4-35
Discriminant Analysis 6-1
Discrimination Power 6-21
Disk icon 11-9
Display Menu 16-34
Displaying results 10-17
Distance

Between classes (SIMCA) 6-21
Euclidean 6-3
Leverage 7-11
Metric 5-2
Prediction (SIMCA) 6-22
Similarity 5-2

Divide by
Options 4-14
Subset mean 4-17
Vector range 4-15

Dollar sign ($) 14-8
Drag and drop

Charts 12-2, 12-3
Data files 14-5

Drop button 12-3

E
Edit

Menu 16-11
Tools 10-4

Eigenvalues 5-18, 5-22, 7-15, 17-7
Eigenvector 5-14, 17-6
Elevator box 13-4
Email address 18-14
Enhanced Meta File (EMF) 15-2, 16-14
Error Analysis 7-31
Error contribution 5-26
Error messages 18-3
Euclidean distance 5-2, 6-3
Excel file 14-5
Exclude 13-20, 16-15
Exclusion sets 11-9, 12-32
Exploratory Data Analysis

Example 2-7
Preparation 4-2

F
F test 5-22
Factor Selection 5-32
FAQ 18-2
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Index A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Farthest neighbor clustering 5-5
Feasible Region 8-21
Feature selection 11-11
File

Drag and drop 14-5
Format

Agilent ChemStation 14-10
AIA chromatography standard 4-23, 

14-10, 15-5
Analect 14-11
ASCII 1-2, 14-5
ASD Indico Pro 14-10
Brimrose AOTF 14-11
Bruker OPUS 14-13
Excel 1-2, 14-5
Guided Wave 14-11
Hamilton Sundstram PIONIR 14-13
Hewlett Packard 8452 14-10, 14-12
JCAMP-DX 14-12
LT Industries 14-12
Perkin-Elmer spectroscopy 14-12
Pirouette 1-2, 14-5

Menu 16-3
Merging 16-5

Fill
by PCA 13-18
for Mask 13-17
Options 13-13, 16-19

Find 11-5
Fisher weight 11-12
Flexible link 5-3, 5-8
Format

Galactic GRAMS 15-3
French 10-22
Frequently asked questions 18-2
FUEL 9-3

G
German 10-22
Global scope (SIMCA) 16-24
Go to 13-3
Graphics

Capture of 15-2
Color 12-34
Creating subsets 12-32
Labeling 12-16, 16-35
Linking 12-28
Magnifying 12-8
Plot types

Line plots 12-13
Scatter plots 12-5 to 12-13

Scaling 12-11
Types 12-4

Grid lines 10-9
Group average link 5-3, 5-9

H
Help

Menu 16-45
System description 1-6

Hierarchical classification 6-26
Hierarchical Cluster Analysis (HCA)

Activate class 12-27
Definition 5-1
Options 16-21

Highlighting 10-1, 13-5
Hotelling’s T2 5-25
HYDROCRB 9-3
Hyperbox (for PCA and SIMCA) 5-30

I
ID Tool 16-36
Identity matrix 17-2
Ill-conditioned matrix 18-7
Incremental link 5-3, 5-9, 5-12
Independent variable 4-5, 7-3, 13-5
Indicator function 5-22
Inner bound 8-23
Insert 13-9
Insertion cursor 10-6
InStep 6-26, 9-6
Interaction tools 16-36
Interpolated fill 16-19
Inverse (of a matrix) 17-6
Inverse least squares 7-3
Italian 10-22

J
Jaggedness 7-9
Japanese 10-22
JCAMP file format 14-12

K
Kennard-Stone 11-10
K-Nearest Neighbors (KNN)

Definition 6-2
Misclassification 6-8
Model 6-5
Optimization 6-10
Options 16-23

Kovats retention index 4-22

L
Labels

Attributes of 10-17
Line plot axis 10-13

Lack of Fit (in ALS) 8-5
Language 10-21
Latent variable 5-14
Leverage 7-11, 7-12
Limits 12-16
Linear Learning Machine 6-1
Linking

Complete link 5-7
HCA methods 5-3
in HCA 16-21
Single link 5-6, 5-11
Views 12-28, 13-6

Loading data 14-3
Loadings 5-18, 5-36, 7-18
Local scope (SIMCA) 16-24
Locally Weighted Regression 7-58
Logarithm 4-13
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E
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L
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N
O
P
Q
R
S
T
U
V
W
X
Y

M
Magnify tool 12-8, 16-36
Mahalanobis distance 5-25, 6-15, 7-48
Marker, for alignment 4-22
Mask

Preparing via Fill 13-17
to Indicate transfer samples 6-29, 7-56
Using 4-11

Matrix 4-36, 17-2
MCR

Discussion 8-12
Math 8-15
Options 8-4, 8-19

Mean center 4-26
Mean fill 16-19
Median link 5-3, 5-8
Menu

Display 16-34
Edit 16-11
File 16-3
Help 16-45
Objects 16-38
Process 16-19
Windows 16-39

Merge
Description 16-5
Drag and drop 14-5

Messages 18-3
Metafile, EMF 15-2, 16-14
Misclassification matrix 6-8, 6-24, 6-27
Missing value

Finding 13-13
symbol in file (M) 14-8
symbol in table (*) 13-8, 13-13, 16-6

Mixture analysis 8-1
MNAPS 8-22, 9-4
Model

ASCII 15-9
Galactic CAL file 15-8
Guided Wave calibration file 15-8
KNN 6-5
PCA 5-43
Regression 7-14, 7-49
Save 15-6
SIMCA 6-19

Model files
PMF 16-7

Model optimization
PLS 7-16
PLS-DA 7-38
SIMCA 6-25

Modeling Power 5-27
Momentum spinning 12-10
Most recent files 16-11
Mouse actions

Click-drag 10-1, 13-4
Control-click 10-2
Right mouse button 11-5, 12-2, 12-8
Shift-click 10-1

MSC 4-21
Multiple Linear Regression 7-3
Multiplication 4-14
Multiplicative Scatter Correction 4-21

Multiplot 10-15, 12-20
Multivariate Curve Resolution 8-12
MYCALIGN 4-24, 9-4
MYCOSING 9-4

N
Names

in Plots 16-35
in Spreadsheet 13-1
of Objects 11-3
of Sets 11-6
of Windows 12-3

Near infrared spectroscopy (NIR) 3-2
Nearest neighbor 6-3
Nearest neighbor clustering 5-5
New 16-3
NIPALS 5-28, 7-5
Node of dendrogram 12-22
Non-negativity 8-16
Normalization

Examples 4-16
Maximum value 4-15
using a Mask 4-16
Vector area 4-14
Vector length 4-15
Vector range 4-15

Notes 10-15, 11-4, 16-14
Number of factors 5-19 to 5-27, 6-25, 7-6 

to 7-9

O
Object Manager

Creating charts from 11-8
Description 11-1
Finding text 11-5
Icons 11-1
Information 11-4
Naming subsets 11-6

Objects
Deleting 11-7
Menu 16-38
Names 11-3

OCT_TEST 3-29
OCTANE20 3-4, 5-11, 9-4
Optimization

F test 5-22
IND function 5-22
KNN 6-10
Number of factors 5-19 to 5-27, 6-25, 

7-6 to 7-9
Number of neighbors 6-8
PRESS 7-7, 7-47
Regression models 3-20
SIMCA 6-25

Options (setting of) 4-32
Orthogonal Leverage 11-11
Orthogonal signal correction (OSC) 7-12
Outlier detection

Importance 5-23
in CLS 7-47
in Scatter plots 4-8
using Leverage 3-20, 7-11
I–4 Z



Index A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

using Mahalanobis distance 5-38, 6-15
using Q statistic 5-25
using Sample Residual 7-48
using Studentized residuals 7-24

Overview region (of dendrogram) 12-24

P
PALMCHRO 14-3
Panning 12-16
Pareto scale 4-31
Parsimonious model 5-27, 7-9
Partial Least Squares (PLS)

Example 3-16
for Classification 7-38
Math 7-5
Model 7-14, 7-48
Optimization 7-16
Options 16-24
Prediction 3-29, 7-31

PCA (see Principal Components 
Analysis)

PCA Fill 13-18
PCA Hypergrid 11-11
PCR (see Principal Components 

Regression)
Piecewise Direct Standardization 4-35
PIONIR 14-13
PIR file 1-2, 14-5, 15-3
Plot

Labels 10-17
Preferences 10-16
Scaling 12-11
Symbols 10-11

PLS (see Partial Least Squares)
PLS-DA 7-38
Plus sign cursor 10-6
PMF 16-7
Point

Default label 10-16
Labels 16-35
Size 10-11

Pointer tool 10-2, 16-36
Portuguese 10-22
Pound sign (#)

ASCII file specifier 14-6
Examples 14-6 to 14-9

Prediction
KNN 6-12
Options 10-19
PCA 5-43
PLS/PCR 7-31
Preferences 10-19
SIMCA 6-26

Preferences
Color

Color sequence 10-18
General settings 10-7

Info Box Font 10-20
Language 10-21
Prediction 10-19
Sets of 10-21
Text 10-8
Views 10-7

Preprocessing
Options 16-21

PRESS 7-7, 7-47
Principal Component Analysis (PCA)

Definition 5-13
Math 5-16
Options 16-22, 16-23, 16-24
Prediction 5-43
Terminology 5-14

Principal Component Regression (PCR)
Math 7-4
Model 7-14, 7-48
Optimization 7-16
Options 16-24
Prediction 7-31

Print setup 15-1, 16-10
Printing 16-9
Probability 5-23, 5-24, 7-22, 10-19
Process Menu 16-19
Projections

in SIMCA 6-24
Pseudo-eigenvalue 7-5
Pure Component Spectra 7-46

Q
Q statistic 5-24
Qualify

in KNN 6-9
in SIMCA 6-23

R
RANDOM 5-4, 9-5
Random sample selection 11-11
Range scale 4-30
Range tool 12-18, 16-36
Rank 4-35, 5-16, 18-7
Recent files 16-11
Redraw 10-13
Regression

Example 3-17
Linear 7-3
Model 7-14, 7-49
Multivariate 7-3
Prediction 7-31
Validation 7-7
Vector 7-24, 15-9

Rename 11-6
Residuals

Between classes (SIMCA) 6-20
Sample, in CLS 7-47
Sample, in PCA 5-23
Studentized 7-11
X-block, in PCA 5-38

Results
Display 10-17

Retention index 4-22
Ribbon

Description 10-3
Edit tools 10-4
File and window tools 10-3
Navigation aids 10-5
Spin control 10-5
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Index A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

View buttons 10-4
Rotation

Spinning 3D views 12-9
Varimax 5-41

Run status 18-5

S
Sample residual 5-23, 7-47
Sample selection 11-10
Save

Data 16-5
Model 15-6
Objects 15-5

Savitzky-Golay 4-12
Scaling

by Range 4-30
by Variance 4-27
in Plots 12-11
Variables 4-17

Scatter plots 12-5 to 12-13
Scores

contributions to 5-26
Graphical description 5-17
in PCA 5-36
in Regression 7-17

Screen capture to printer 15-1
Scripting 19-1

Examples 19-8
Scroll tools 13-4
SEC 7-12
Selecting data

Cloaking 12-8
in Charts 12-5
in Tables 13-5

Selectivity 6-28
Selector button 10-5, 12-14, 12-19
Sensitivity 6-28
SEVEN 9-5
Shift-click 10-1, 16-5
SIMCA (see Soft Independent Modeling 

of Class Analogy)
Similarity 5-2, 12-23, 12-25
Simplicity 5-28
Single link 5-3, 5-6, 5-11
Singular Value Decomposition (SVD) 7-4
SMCR 8-12
Smoothing 4-12
SNV 4-22
Soft Independent Modeling of Class 

Analogy (SIMCA)
Definition 6-15
Model 6-19
Optimization 6-25
Options 16-24
Prediction 6-26

Sort 13-11
Source

Amounts 8-20
Apportionment 8-1, 8-24
Profiles 8-20

Spanish 10-22
SPE 5-24
Spin control buttons 12-10

Spinner Tool 12-9, 16-36
Spreadsheet

Cursors 10-6
Entering data 14-1
Labels

in ASCII file 14-6
in spreadsheet file 14-9

Navigation 13-2
Variable types 13-10

Squared prediction error (SPE) 5-24
Standard deviation 5-13
Standard Error

of Calibration (SEC) 7-7, 7-12, 7-47, 7-
49

of Prediction (SEP) 7-7, 7-47
of Validation (SEV) 7-8

Standard Normal Variate 4-22
Statistical Prediction Error (SPE) 7-46
Studentized residual 7-11
Submenu 16-1
Subset selection 4-34
Subsets

by Variable selection 11-11
from Plots 12-32
from Sample selection 11-10
from Spreadsheets 13-20
making a Full Data set 11-9, 18-2
Naming 11-6
Removing 11-7

Subtraction 4-18
Support 18-14
Symmetric matrix 17-2

T
Technical assistance 1-6, 18-14
TERNARY 9-5
Test set 3-29
TIFF 15-2
Total contribution 5-26
Total Modeling Power 6-21
Training set 4-5
Transfer of calibration 4-33, 4-34, 6-29, 

7-56
Transfer samples 6-29, 7-56
Transforms 4-10, 16-28
Transmittance spectra 4-13
Transpose

function 13-12, 16-7
of a matrix 17-3
of data 14-7

Troubleshooting 18-1

U
Uncertainty 7-12
Undo 16-13
Unmagnify 12-8
Unzoom 10-4
User charts 12-1
User permissions 1-5, 18-1

V
Validation
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D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Regression 7-7
Standard Error of 7-8

Variable
Dependent vs. independent 4-5
Selection 11-11
Types 13-10

Variance 5-13, 5-23, 7-47
Variance scale 4-27
Variance weight 11-12
Varimax 5-28 to 5-29, 5-41
Vector

Area normalization 4-14
Definition 17-1
Length normalization 4-15

Version of software 16-46
View

Preferences 10-7
Types 10-4, 12-4

W
Warning messages 18-8
Web site 18-14
Weight loadings 7-6
Window

Preferences 10-16

Titles 12-3
Window size

Align transform 4-23
PDS 4-35

Windows Explorer, load data from 14-4
Windows Menu 16-39

X
X Limits 12-16
X Preprocessed 5-32
X Residuals

in PCA 5-38
in PLS 7-26
Prediction 7-33

X variable 4-5, 13-5
XLS file 1-2
XRF 9-5

Y
Y variable 4-5, 13-5

Z
Zero fill 13-13, 16-19
Zoom button 10-4, 12-20
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