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ABSTRACT 
 
A project has been undertaken to assess how to reduce the amount of effort devoted to maintaining 
and optimizing spectroscopic model performance in support of refinery and chemical plant labs. 
Over the last five years, a series of algorithmic approaches have been examined with the goal of 
streamlining the process of chemometric model construction to make the models significantly 
more robust when put into routine practice. This effort generated the following observations: 
 

1. Even though there are published “Best Practices” for generating chemometric models, 
these practices are infrequently followed; 

2. Recalibration of an optical spectrometer is frequently required due to changes in crude 
slates and blending component composition; 

3. Even if a calibration was performed properly during initial installation, staffing changes 
and lack of training has undermined recalibrations; and 

4. It is of benefit to minimize software maintenance frequency to control product giveaway. 
 
This paper focuses on a multi-organization effort leading to an improvement in calibration 
procedures for on-line and laboratory multiwavelength spectrometers. Here the authors detail the 
process of calibration and demonstrate a path to build calibrations that are more reliable and 
potentially less sensitive to process shifts. Much of this improvement can be attained without 
requiring replacement of either the hardware or software in place. Additional improvement in 
calibration quality is available through the use of well-referenced methods that constitute the best 
technologies available. 
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INTRODUCTION 
 
Petroleum and petrochemical industries favor the use of optical analyzers for extracting detailed 
chemical information rapidly, allowing information to flow in a timely manner and improving 
process control. Chemometrics is employed to provide a calibration tying the spectral signals to 
specific chemical concentrations or physical properties. Indeed, industry has adopted a series of 
practices designed to perform this translation from spectrum to information. Unfortunately, it is 
not as simple as: pour in spectral data, subject it to an algorithm like partial least squares (PLS), 
and know that the analyzer will function as long as the light stays on. In order to use optical 
analyzers effectively, the analyst needs to consider the limitations that ultimately determine the 
eventual success and life-expectancy of any calibration. There are many areas that have an impact 
on the ultimate quality of a chemometrics calibration: outlier detection, selection of number of 
factors, and even choice of algorithm; some techniques, such as variable selection and sample 
handling, were addressed but are beyond the scope of this paper.  
 
Spectroscopy is a powerful instrumented technique that is used effectively in all facets of the 
hydrocarbon processing industry. For some applications, like measuring small amounts of water 
in a hydrocarbon stream, the calibration of a spectrometer will be stable and can go without 
significant maintenance for extended periods of time. In other applications, such as differentiating 
relative concentrations of hydrocarbons or bulk properties, the calibration may drift such that the 
analyzer no longer tracks the process. This is caused by instrument variability, by changes in the 
blend due to fluctuations in the input hydrocarbons, and by process changes.  
 
Three areas are of practical concern to the chemometrician: limitations of the analyzer technology; 
limitations of the reference technique; and choices inherent to the chemometrics processing. These 
concerns are summarized in Table I. 
 
TABLE I. LIMITATIONS THAT DICTATE CALIBRATION QUALITY. 
 
LIMITATIONS OF 
ANALYZER 
TECHNOLOGY 

• Works by inference (optical spectroscopy is a functional group counter) 
• Instruments have non-linear response 
• Instruments can vary over time on both a long and a short time scale 
• Instrument-to-instrument variability requires either separate calibrations or 

calibration transfer 
LIMITATIONS OF 
REFERENCE 
TECHNIQUE 

• Error in the reference method can limit calibration model quality; reducing 
reference method error can improve model reliability 

• The impact depends on the precision of the reference method relative to the 
precision of spectral measurements 

LIMITATIONS OF 
CHEMOMETRIC 
PROCESSING 

• Choosing which samples to use for calibration (consideration of range, outliers, 
swamping, masking) 

• Determining portions of the spectrum to exclude for modeling and predictions 
• Selecting the proper number of factors to properly balance the variance bias 

trade off without over-fitting 
• Selecting algorithmic parameters including which algorithm and appropriate 

preprocessing and transformations 
• Corrections for instrument variability over time and between instruments 
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This report summarizes eleven separate calibration efforts spanning four different analyzer 
technologies and five different end user companies. Ten evaluations involved motor fuel 
assessment, one stemmed from applications in chemicals. Five of the analyzers were FT-NIR, four 
were Raman systems, and one each came from dispersive NIR and mid IR. As a result, the primary 
focus is on the use of Raman and FT-NIR for the quality control of motor fuels, but, from this and 
many other investigations, the conclusions are broadly applicable. 
 
In reviewing the data sets involved in this study, calibrations can be characterized by three 
philosophies. Common Practice is to spend only a small effort vetting the data looking for outliers 
and accepting the software-suggested number of factors based on a leave-one-out cross validation. 
Best Practices start the same as Common Practices, but more time is spent using software tools 
supplied with the instrument for eliminating outliers from the calibration data set and looking at 
additional diagnostics to identify the best number of factors to retain. Enhanced Practices apply 
the best available technology to significantly reduce the errors associated with preparing 
calibration models for routine use. 
 
 

METHODS 
 
The Partial Least Squares (PLS) method is the multivariate calibration method used for the 
Common Practices and Best Practices analyses in this report. The PLS method was developed 
around 1975 by Herman Wold [1] and has been extensively documented in the literature [2,3] 
along with more recent adjustments on the details of its implementation [4-7]. The PLS method 
addresses the regression problem in which there is strong colinearity among the variables and more 
variables than samples. It is ideally suited to deal with spectroscopic measurements.  
 
Although PLS is a powerful regression method, it still suffers from undue influence by outlier 
samples due to its least squares nature. The effects of outliers on multivariate calibration methods, 
and the heretofore best practices for identifying them, have been documented in the literature [8-
10]. Martens and Næs devote an entire chapter to the subject of outliers in their book [11]. One of 
the most promising approaches for outlier detection is robust analysis [12]. In this report we make 
use of the robust PLS method developed by Hubert [13] for the Enhanced Practices analysis. 
 
Robust methods can improve on the selection of samples for the development of multivariate 
calibration models. Modeling nonlinear behavior can also be addressed using local modeling. For 
the Enhanced Practices, the method of locally-weighted regression (LWR), in which a regression 
model is developed on a reduced set of neighboring samples and is performed as reported by 
Centner and Massart [14]. For cases when Enhanced Practices uses genetic algorithms, the  method 
developed by Leardi is used [15]. 
 
There are many metrics available to assess the correct degree of model complexity by choosing 
the number of factors to use in modeling. This is well-documented [11], but often very subjective, 
and selecting too many factors is frequently the cause of overfitting. When the regression vector 
starts to appear noisy or jagged, it is an indication that the model is overfit. A metric that 
characterizes jaggedness attempts to quantify the relevance of the noise compared to the overall 
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signal [16]. Error values are listed in this report as Root Mean Squared Error of Cross Validation 
(RMSECV). 
 
All of the algorithms described are available as MATLAB® (Mathworks®, Natick, MA) routines; 
most are implemented in the Pirouette® software (Infometrix®, Bothell, WA). 
 
 

RESULTS AND DISCUSSION 
 
In processing the results of the data evaluations, three areas arose as being of primary concern in 
constructing a useful model. This section is divided into separate discussions of: model complexity 
(typically flawed in practice by choosing too many factors to include in the regression model), the 
handling of outliers (too many or inappropriate calibration samples), and the choice of algorithmic 
parameters. A brief discussion of each concern follows. 
 
 
MODEL COMPLEXITY 
 
One must balance the needs of adequately modeling the properties and/or concentrations of interest 
while avoiding overfitting the calibration data. This is done by setting the model complexity (that 
is, the number of factors) properly. Assessing how many factors are enough and where the model 
tips into overfitting can be performed with the aid of diagnostics, but the ultimate decision is 
usually subjective. Many end-users report spectroscopic models with 20 or more factors, almost 
always overfitting the data and compromising model flexibility and accuracy for what appears to 
be a lower calibration error. Selecting too many model factors seriously degrades the ability of the 
model to track the process and limits its usefulness in the future. 
 
One common practice to decide on the number of factors is to use leave-one-out cross validation, 
which proceeds as follows. The first sample (spectrum and reference value) is removed from (i.e., 
left out of) the calibration set and a model is built on the remaining samples. A prediction is made 
on the left-out sample and the difference between this predicted value and the reference value is 
recorded. This procedure is repeated until every sample in the data set is left out once and an 
overall calibration error is estimated based on all of the individual sample prediction errors. 
 
Cross validation is critical, but a leave-one-out approach is most appropriate for small data sets. 
As the calibration set grows large (more than 50 samples, for example), the chance of having an 
equivalent pair of spectrum and reference value somewhere else in the data set increases and the 
error estimate may become overly optimistic. Because most of the calibration data sets used in 
motor fuel property prediction need to be big to span the variance in the process, a more realistic 
assessment is done by using a Venetian blind approach on the data, leaving out every nth sample, 
such that 10-20% of samples are left out at a time. The process is repeated so that every sample is 
left out exactly once. This approach minimizes overfitting. To better understand how overfitting 
creates problems in using calibration models, consider the impact of a small spectral perturbation 
on a chemometric evaluation. Figure 1 shows a Raman spectrum with a minor peak added to an 
unimportant portion of the baseline. 
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FIGURE 1. RAMAN RESPONSE VS. WAVENUMBER WITH PERTURBATION PEAK 
ADDED AT 1650 CM-1. 
 
 
As the concentration of the unusual peak is increased (shown as perturbation level in Figure 2), a 
model that is overfitting the calibration data will drift further from the expected value. The 24-
factor model has a significant change in the estimated concentration compared with the 8-factor 
model as a function of the perturbation level. 
 

 
 
FIGURE 2. PREDICTED VALUE VERSUS PERTURBATION LEVEL. A 24-FACTOR 
MODEL DEVIATES FROM PREDICTION; AN 8-FACTOR MODEL IS STABLE. 
 
 
Adding a small amount of noise to a spectrum that is overfit may also increase uncertainty in the 
predicted value. In another experiment, random noise with an intensity of 0.02% of the maximum 
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intensity is added across a spectrum, followed by a prediction. After repeating this process 50 
times, the results are charted in Figure 3. This demonstrates the problem of overfitting: with each 
model, predicting the same 50 identical but slightly noise-altered spectra, the standard deviation 
of the predictions is 3 times larger using the 24 factor model compared to the 8 factor model. 
 

 
 
FIGURE 3. THE STANDARD DEVIATION OF PREDICTIONS IS SIGNIFICANTLY 
LARGER USING THE OVERFIT MODEL. 
 
 
These examples show the problem that accompanies overestimating the correct number of factors 
in a PLS model. A metric known as jaggedness works well for avoiding the selection of too many 
factors. Jaggedness tests the effect of shifting the regression vector by one wavelength unit and 
computing the difference in the shifted and unshifted spectrum, looking for the point at which 
noise starts to become a major factor in the model. Combining the jaggedness criterion with the 
bias error found through the standard error of calibration guarantees a minimum which is a 
reasonable estimate of the optimal number of factors. The metric successfully balances the 
variance bias trade off that is implicit in the selection of the number of factors. All following 
discussions of model results and errors used jaggedness for determining the number of factors in 
the models. 
 
 
HANDLING OUTLIERS 
 
Another common mistake is the inconsistent, subjective removal of outliers via methods that are 
based solely upon visual inspection. Often outlier identification is restricted to an analyst’s visual 
inspection of a model’s Y/Y-plot and removal of samples that obviously deviate from the 1:1 ideal. 
This method of “outlier” removal is a non-statistical method that is likely to both remove samples 
that are important to the quality of the calibration and while retaining non-obvious statistical 
outliers. Best Practices removal of outliers should involve investigation of samples using 
statistically derived metrics, such as Mahalanobis distance, studentized residuals, F-ratio, and 
leverage. This Best Practices approach is depicted in Figure 4, where a Y/Y plot (left) and two 
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common outlier diagnostics (right) are examined to identify samples to remove. Outliers are 
identified with red stars. Note that some 1:1 outliers are still included, and other samples that 
follow the 1:1 line are separately identified as outliers.  
 

 
 
FIGURE 4. Y/Y PLOT (LEFT) AND OUTLIER DIAGNOSTICS (RIGHT) FOR A PLS 
MODEL; OUTLIERS ARE IDENTIFIED WITH RED STARS.  
 
 
Without removal of outliers, the RMSECV is shown to be 0.55. After removal of these outliers, a 
new Y/Y plot (Figure 5, left) shows an improved RMSECV of 0.23. This is a significant 
improvement in model capability, but the new model also apparently contains further outliers as 
detected by the same technique (red stars on Figure 5, right and left). This often happens with Best 
Practices outlier removal approach. There is no consensus as to how many rounds of outlier 
removal is appropriate, and each round of outlier removal risks improper removal of samples. Even 
if such a process could be optimized, it is still subjective, can be time-consuming, and the approach 
will differ depending on the dataset and instrument technology. 
 

 
 
FIGURE 5. Y/Y PLOT (LEFT) AND OUTLIER DIAGNOSTICS (RIGHT) FOR A PLS 
MODEL THAT HAS ALREADY HAD OUTLIERS REMOVED; NEW OUTLIERS ARE 
IDENTIFIED ON BOTH PLOTS WITH RED STARS. 
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There is, however, an objective mechanism for identifying spectra that should not be retained for 
calibration: RobustPLS, an algorithm that identifies outliers in an automated fashion. Once 
optimized for a particular instrument and reference measurement, RobustPLS can rapidly define 
the calibration set with results comparable with, even superior to, analysis performed by an expert. 
Figure 6 shows diagnostic plots for the same dataset as above with a number of samples that are 
clear outliers, and also cases that are not identified by common evaluation techniques. This graphic 
shows the distribution of outliers identified by RobustPLS with the Y/Y plot clearly showing 
samples that are not normally detected as outliers. When samples are identified by RobustPLS as 
outliers, but those same samples are not identified by the common evaluation techniques, then 
masking is taking place. This can occur when there are multiple outliers and they work together to 
hide one another. When outliers are identified by the common evaluation techniques, but those 
same samples are not identified as outliers by RobustPLS, then swamping is taking place. This is 
in some respects even worse than masking because analysts believe they are removing outlier 
samples when in fact they are removing good samples. 
 
To summarize, RobustPLS helps avoid two scenarios that confound outlier identification by visual 
means: 

• Masking - when bad data points are hidden by other bad data points and thus appear to be 
good points. 

• Swamping - when bad data points make good data points look like bad data points. 
 

 
 
FIGURE 6. Y/Y (LEFT) AND TWO OUTLIER DIAGNOSTICS (RIGHT) PLOTTED FOR 
ROBUSTPLS MODEL; OUTLIERS ARE DETERMINED BY ROBUST STATISTICS 
AND ARE MARKED WITH RED STARS. 
 
 
Removal of the outliers identified via RobustPLS results in the PLS model below in Figure 7 (left) 
which has cut the initial prediction error by more than 4 fold, from 0.55 to 0.12, and reduced the 
“best practices” error of 0.23 by half. Outlier diagnostics on this data (Figure 7, right) show results 
from the application of RobustPLS. These are ideal results that were attainable without multiple 
passes or operator judgment. Note that some samples that may be considered “outliers” by an 
analyst have still been included, indicating that RobustPLS identified these samples as statistical 
inliers. This process is easily automated, allowing for rapid and objective creation of calibration 
sets. 
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FIGURE 7. ROBUST PLS MODEL (LEFT), AFTER REMOVAL OF OUTLIERS 
IDENTIFIED IN FIGURE 5; OUTLIER DIAGNOSTICS (RIGHT) SHOWING TIGHT 
SAMPLE BEHAVIOR. 
 
 
ALGORITHM PROCESSING 
 
PLS is the modeling algorithm most often selected for spectroscopy systems.  This choice is very 
reasonable in its application to motor fuel properties in that PLS allows for more variables than 
samples and addresses the colinearity problem and multivariate averaging. That does not mean, 
however, that selecting the proper number of factors and eliminating outliers are the only decisions 
that will impact model quality. Preprocessing and transformations are commonly applied and are 
not discussed here. Spectral range can also be restricted to improve the predictive capacity of the 
PLS model. Very important but less common is the restriction of the range of samples used during 
the prediction step; this Enhanced Practice is described here. 
 
Through a large variety of projects, locally weighted regression (LWR) has frequently shown 
results that rival or improve results from standard PLS. This advanced technique can be found in 
many commercially available software packages, but is rarely used for motor fuel properties due 
to a lack of familiarity with the technique. When presented with a prediction task, LWR abridges 
the data by identifying those samples that most closely correspond to the prediction sample. It then 
uses this data subset to construct a calibration on the fly and apply it's model to this sample. LWR 
requires only setting the number of nearest neighbors to use for calibration and set the number of 
factors. 
 
Using the same example dataset (including outliers identified via RobustPLS) as above, analysis 
(shown below in Figure 8) shows that cross validation error reaches an equilibrium around 6-8 
factors, when using fewer than 150 nearest neighbors. 
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FIGURE 8. ERROR CONTOURS (RMSECV) VS. NUMBER OF FACTORS AND 
NEAREST NEIGHBORS FOR LWR ANALYSIS. 
 
 
The final LWR model (Y/Y-plot shown below in Figure 9) used 8 factors and 94 nearest neighbors; 
final model prediction error was 0.096, one-fifth of the original (Figure 4) and a further 
improvement on the robust outlier set (Figure 7). 
 

 
 
FIGURE 9. Y/Y-PLOT OF LWR MODEL. 
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Not all properties benefit from such a segmented approach, but there are often significant benefits 
both in lowering the prediction error and in making the model reliable in a process setting. The 
value of using LWR is a function of both the instrument type (Raman, NIR, FT-NIR, or mid-IR) 
and the property of interest.  
 
 
THE RESULT OF ENHANCED PRACTICES ON MOTOR FUEL PROPERTIES 
 
In review of the results of all of the property predictions, there are clear advantages to expanding 
the typical set of chemometric tools when performing calibrations.  In Table II, we average the 
results of the five FT-NIR instruments and the four Raman systems into a single table. The 
numbers are not comparable between these two instrument types; the individual analyses that 
combine to form this table differ vastly. 
 
The table should be examined for the level of improvement seen as one progresses from Common, 
through Best to Enhanced Practices. In general, the number of factors stays the same or decreases 
slightly through this progression. The reader should be careful not to compare the error values 
between the two instrument types. The errors are affected by a variety of site-specific problems 
and do not form the basis of a direct comparison. In fact, in one instance where we were able to 
compare the same samples on the two analyzer technologies, the results were substantially the 
same. 
 
 
TABLE II. SUMMARY RESULTS FOR RAMAN AND FTNIR INSTRUMENTS. 
 
Raman Summary Results 

 
 
FTNIR Summary Results 

 
 
A consistent application of Best Practices yields an improvement in the 30-50% range; Enhanced 
Practices can provide even greater improvements, depending on the property. Figure 10 shows 
representative results from one of the FT-NIR instruments. 

FACTORS ERROR % ERROR FACTORS ERROR % ERROR % IMPROVED FACTORS ERROR % ERROR % IMPROVED
API 8 1.505 0.035 7 0.601 0.024 86% 8 0.510 0.020 99%

AROMATICS 6 2.720 0.082 6 1.140 0.037 82% 6 0.355 0.013 154%
BENZENE 9 0.106 0.046 8 0.036 0.022 97% 7 0.024 0.016 123%

IBP 9 3.250 0.079 8 2.850 0.091 13% 6 2.650 0.010 20%
T50 7 6.152 0.054 7 4.051 0.049 44% 8 3.220 0.038 65%
FBP 10 13.570 0.071 9 9.660 0.085 34% 9 9.260 0.078 38%
RON 9 1.054 0.069 9 0.652 0.056 45% 9 0.398 0.035 83%
MON 8 1.104 0.090 9 0.533 0.043 68% 9 0.452 0.049 82%

BEST PRACTICES ENHANCED PRACTICESCOMMON PRACTICES

FACTORS ERROR % ERROR FACTORS ERROR % ERROR % IMPROVED FACTORS ERROR % ERROR % IMPROVED
API 6 0.55 4.0% 7 0.23 1.7% 82% 8 0.10 0.7% 140%

AROMATICS 9 1.08 3.3% 6 0.76 2.6% 34% 10 0.72 3.1% 40%
BENZENE 7 0.05 5.7% 9 0.04 5.5% 16% 9 0.03 4.3% 41%

IBP 6 2.37 4.1% 3 1.83 3.2% 26% 9 1.53 7.0% 43%
T50 7 2.72 4.7% 7 1.44 2.5% 65% 9 1.28 2.6% 71%
FBP 10 4.16 8.3% 4 3.26 6.5% 24% 9 3.32 6.9% 23%
RON 9 0.40 3.2% 8 0.29 2.4% 30% 8 0.24 2.3% 47%
MON 8 0.33 3.9% 7 0.26 3.3% 23% 6 0.20 2.7% 49%

ENHANCED PRACTICESBEST PRACTICESCOMMON PRACTICES
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FIGURE 10. IMPROVEMENT OF ONE EXAMPLE INSTRUMENT PREDICTING NINE 
PROPERTIES USING ENHANCED PRACTICES. 
 

CONCLUSIONS 
 
Based on the processing of a number of data sets, the authors find that it is possible to improve on 
the standard approach to calibrating optical analyzers. Some benefits described in this paper can 
be realized without making any change to the existing hardware or installed software. Some 
improvements, on the other hand, are only available if the instrument company’s software is 
augmented by a more-complete chemometrics package. Further day-to-day improvement is 
available by adding hardware and software to streamline, even automate portions of the calibration 
procedure. 
 
Because the choice of samples to include in the calibration can be made outside of the legacy 
instrument, an optimum set of samples for calibration can be composed and brought into the 
analyzer software. In testing the RobustPLS approach to calibration sample set assembly, we found 
that this mechanism is automatable and delivers an objective collection of samples that duplicates 
or improves the model quality that a talented chemometrician would supply. The authors suggest 
using the approach embodied in the jaggedness criterion to compliment standard error calculations 
and avoid overfitting calibration models. 
 
In addition, because of non-linearity in the spectral measurements and changes to the ingredient 
streams, this study has found that separating the data into smaller subsets can substantially reduce 
the calibration error for many of the properties being modeled. In general, results were improved 
by applying PLS to segments in the calibration data set either by using a global PLS model to 
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select a subsequent final model (hierarchical modeling), or by using the spectral features to identify 
appropriate samples to use and build the calibration subset on the fly (locally-weighted PLS 
regression). This is not common in instrument company software, but is available from several 
third-party suppliers. 
 
Finally, there are areas where a change in procedure is beneficial. The data employed in creating 
the multivariate calibrations are often not stored in a consistent, orderly manner making it difficult 
to recreate models. The models are used and subsequently, upon replacement, never reused. 
Because there are cycles in the operating parameters of a chemical plant or refinery, there may be 
value in keeping old data either to update the existing calibrations or construct a longer-lasting 
evaluation schema. 

Some specific suggestions: 

• Outlier detection should be done on a property-by-property basis; it should not be done 
globally, and should employ robust methods. This is an objective mechanism to choose an 
optimal calibration set. 

• Select the number of factors with a combination of jaggedness of the regression vector, 
spectral residuals, and the fit error (RMSECV).  

• Use LWR when Y/Y plots exhibit nonlinearity. The calibration data with a reasonable cross 
validation scheme should be used to estimate LWR parameters and potential model 
performance improvements. 

• Avoid using leave-one-out cross validation; instead, order the spectra by their property 
value and use a Venetian blind approach. 
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